Skip to main content

Advertisement

Log in

Effect of Nano-Titanium Dioxide on Blood-Testis Barrier and MAPK Signaling Pathway in Male Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Some studies have found that nano-sized titanium dioxide (nano-TiO2) has adverse effects on the male reproductive system. Blood-testis barrier (BTB), as one of the tightest blood-tissue restriction, is crucial to the male reproductive system. However, the potential effects on BTB and signaling pathway changes in testis tissue induced by nano-TiO2 remain poorly understood. Therefore, in this study, 60 Institute of Cancer Research mice were divided randomly into four groups (per group = 15). The mice of four groups were intragastrically administered with 0, 10, 50, and 100 mg/kg BW nano-TiO2 respectively for 30 days to analyze the changes of BTB structure, BTB-related proteins, and MAPK signal pathways. Besides, testosterone level, estradiol level, and sperm parameter (sperm count, sperm motility, and sperm malformation rate) changes were also studied in this research. The results indicated that nano-TiO2 could induce the BTB structural damage and accompanied by the BTB main protein (ZO-1, Claudin-11, and F-actin) elevation of irritability. Nano-TiO2 could also activate the MAPK signaling pathways (p38, JNK, and ERK) of mice testis tissue. The testosterone and estradiol levels in serum reduced. Besides when the mice were administered with nano-TiO2, we also found the sperm motility rate decreased, and sperm malformation increased. The above changes may be associated with BTB damage and the activation of MAPK signaling pathways, thereby causing male reproductive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akasaka H, Mukumoto N, Nakayama M, Wang T, Yada R, Shimizu Y, Inubushi S, Kyotani K, Okumura K, Miyamoto M, Nakaoka A, Morita K, Nishimura Y, Ogino C, Sasaki R (2019) Investigation of the potential of using TiO2 nanoparticles as a contrast agent in computed tomography and magnetic resonance imaging. Appl Nanosci. https://doi.org/10.1007/s13204-019-01098-y

    Article  Google Scholar 

  2. Tsang MP, Hristozov D, Zabeo A, Koivisto AJ, Jensen ACØ, Jensen KA, Pang C, Marcomini A, Sonnemann G (2017) Probabilistic risk assessment of emerging materials: case study of titanium dioxide nanoparticles. Nanotoxicology 11(4):558–568. https://doi.org/10.1080/17435390.2017.1329952

    Article  CAS  PubMed  Google Scholar 

  3. Khabir Z, Guller AE, Rozova VS, Liang L, Lai Y, Goldys EM, Hu H, Vickery K, Zvyagin AV (2019) Tracing upconversion nanoparticle penetration in human skin. Colloids and Surfaces B: Biointerfaces 184:110480. https://doi.org/10.1016/j.colsurfb.2019.110480

    Article  CAS  PubMed  Google Scholar 

  4. Zhao L, Zhu Y, Chen Z, Xu H, Zhou J, Tang S, Xu Z, Kong F, Li X, Zhang Y, Li X, Zhang J, Jia G (2018) Cardiopulmonary effects induced by occupational exposure to titanium dioxide nanoparticles. Nanotoxicology 12(2):169–184. https://doi.org/10.1080/17435390.2018.1425502

    Article  CAS  PubMed  Google Scholar 

  5. Rollerova E, Tulinska J, Liskova A, Kuricova M, Kovriznych J, Mlynarcikova A, Kiss A, Scsukova S (2015) Titanium dioxide nanoparticles: some aspects of toxicity/focus on the development. Endocrine Regulations 49(02):97–112. https://doi.org/10.4149/endo_2015_02_97

    Article  CAS  PubMed  Google Scholar 

  6. Liu B, Wu S, Shen L, Zhao T, Wei Y, Tang X, Long C, Zhou Y, He D, Lin T, Wei G (2019) Spermatogenesis dysfunction induced by PM2.5 from automobile exhaust via the ROS-mediated MAPK signaling pathway. Ecotox Environ Safe 167:161–168. https://doi.org/10.1016/j.ecoenv.2018.09.118

    Article  CAS  Google Scholar 

  7. Wang R, Song B, Wu J, Zhang Y, Chen A, Shao L (2018) Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomed 13:8487–8506. https://doi.org/10.2147/IJN.S170723

    Article  CAS  Google Scholar 

  8. Horan Tegan S, Alyssa M, Terry H (2017) Germline and reproductive tract effects intensify in male mice with successive generations of estrogenic exposure. Plos Genet 13:e1006885. https://doi.org/10.1371/journal.pgen.1006885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sarfraz M, Ashraf Y, Sajid S, Am A (2015) Testosterone level in testicular cancer patients after chemotherapy. West Indian Med J 64:487–494. https://doi.org/10.7727/wimj.2016.060

    Article  CAS  PubMed  Google Scholar 

  10. Song G, Lin L, Liu L, Wang K, Ding Y, Niu Q, Mu L, Wang H, Shen H, Guo S (2017) Toxic effects of anatase titanium dioxide nanoparticles on spermatogenesis and testicles in male mice. Pol J Environ Stud 26(6):2739–2745. https://doi.org/10.15244/pjoes/70807

    Article  CAS  Google Scholar 

  11. Cao Z, Huang W, Sun Y, Li Y (2020) Deoxynivalenol induced spermatogenesis disorder by blood-testis barrier disruption associated with testosterone deficiency and inflammation in mice. Environ Pollut 264:114748. https://doi.org/10.1016/j.envpol.2020.114748

    Article  CAS  PubMed  Google Scholar 

  12. Lu Y, Luo B, Li J, Dai J (2016) Perfluorooctanoic acid disrupts the blood–testis barrier and activates the TNFα/p38 MAPK signaling pathway in vivo and in vitro. Arch Toxicol 90(4):971–983. https://doi.org/10.1007/s00204-015-1492-y

    Article  CAS  PubMed  Google Scholar 

  13. Pelz L, Purfürst B, Rathjen FG (2017) The cell adhesion molecule BT-IgSF is essential for a functional blood–testis barrier and male fertility in mice. J Biol Chem 292(52):21490–21503. https://doi.org/10.1074/jbc.RA117.000113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chakraborty A, Singh V, Singh K, Rajender S (2020) Excess iodine impairs spermatogenesis by inducing oxidative stress and perturbing the blood testis barrier. Reprod Toxicol 96:128–140. https://doi.org/10.1016/j.reprotox.2020.06.012

    Article  CAS  PubMed  Google Scholar 

  15. Cao X, Shen L, Wu S, Yan C, Zhou Y, Xiong G, Wang Y, Liu Y, Liu B, Tang X, Guo M, Liu D, Long C, Sun M, He D, Lin T, Wei G (2017) Urban fine particulate matter exposure causes male reproductive injury through destroying blood-testis barrier (BTB) integrity. Toxicol Lett 266(15):1–12. https://doi.org/10.1016/j.toxlet.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  16. Zhai J, Geng X, Ding T, Li J, Tang J, Chen D, Cui L, Wang Q (2019) An increase of estrogen receptor α protein level regulates BDE-209-mediated blood-testis barrier disruption during spermatogenesis in F1 mice. Environ Sci Pollut R 26(5):4801–4820. https://doi.org/10.1007/s11356-018-3784-2

    Article  CAS  Google Scholar 

  17. Chen N, Su P, Wang M, Li Y (2018) Ascorbic acid inhibits cadmium-induced disruption of the blood-testis barrier by regulating oxidative stress-mediated p38 MAPK pathways. Environ Sci Pollut R 25(22):21713–21720. https://doi.org/10.1007/s11356-018-2138-4

    Article  CAS  Google Scholar 

  18. Ma B, Zhang J, Zhu Z, Bao X, Zhang M, Ren C, Zhang Q (2019) Aucubin, a natural iridoid glucoside, attenuates oxidative stress-induced testis injury by inhibiting JNK and CHOP activation via Nrf2 up-regulation. Phytomedicine 64:153057. https://doi.org/10.1016/j.phymed.2019.153057

    Article  CAS  PubMed  Google Scholar 

  19. Wu D, Huang C, Jiao X, Ding Z, Zhang S, Miao Y, Huo L (2019) Bisphenol AF compromises blood-testis barrier integrity and sperm quality in mice. Chemosphere 237:124410. https://doi.org/10.1016/j.chemosphere.2019.124410

    Article  CAS  PubMed  Google Scholar 

  20. Shahin NN, Mohamed MM (2017) Nano-sized titanium dioxide toxicity in rat prostate and testis: possible ameliorative effect of morin. Toxicol Appl Pharmacol 334:129–141. https://doi.org/10.1016/j.taap.2017.08.014

    Article  CAS  PubMed  Google Scholar 

  21. Kobyliak NM, Falalyeyeva TM, Kuryk OG, Beregova TV, Bodnar PM, Zholobak NM, Shcherbakov OB, Bubnov RV, Spivak MY (2015) Antioxidative effects of cerium dioxide nanoparticles ameliorate age-related male infertility: optimistic results in rats and the review of clinical clues for integrative concept of men health and fertility. Epma J 6(12). https://doi.org/10.1186/s13167-015-0034-2

  22. Khorsandi L, Orazizadeh M, Moradi-Gharibvand N, Hemadi M, Mansouri E (2017) Beneficial effects of quercetin on titanium dioxide nanoparticles induced spermatogenesis defects in mice. Environ Sci Pollut R 24(6):5595–5606. https://doi.org/10.1007/s11356-016-8325-2

    Article  CAS  Google Scholar 

  23. Ye L, Hong F, Ze X, Li L, Zhou Y, Ze Y (2017) Toxic effects of TiO2 nanoparticles in primary cultured rat sertoli cells are mediated via a dysregulated Ca2+ /PKC/p38 MAPK/NF-κB cascade. J Biomed Mater Res a 105(5):1374–1382. https://doi.org/10.1002/jbm.a.36021

    Article  CAS  PubMed  Google Scholar 

  24. Kang SJ, Kim BM, Lee YJ, Hong SH, Chung HW (2009) Titanium dioxide nanoparticles induce apoptosis through the JNK/p38-caspase-8-Bid pathway in phytohemagglutinin-stimulated human lymphocytes. Biochem Bioph Res Co 386(4):682–687. https://doi.org/10.1016/j.bbrc.2009.06.097

    Article  CAS  Google Scholar 

  25. Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WCW, Chen C, Chen X, Chen X, Cheng Z, Cui D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M, Gogotsi Y, Grünweller A, Gu Z, Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P, Jian J, Jiang X, Jungebluth P, Kadhiresan P, Kataoka K, Khademhosseini A, Kopeček J, Kotov NA, Krug HF, Lee DS, Lehr C, Leong KW, Liang X, Ling Lim M, Liz-Marzán LM, Ma X, Macchiarini P, Meng H, Möhwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T, Oliveira J, Park TH, Penner RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak RE, Shen Y, Sjöqvist S, Skirtach AG, Soliman MG, Stevens MM, Sung H, Tang BZ, Tietze R, Udugama BN, VanEpps JS, Weil T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q, Zhang Q, Zhang X, Zhao Y, Zhou X, Parak WJ (2017) Diverse applications of nanomedicine. Acs Nano 11(3):2313–2381. https://doi.org/10.1021/acsnano.6b06040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huwyler J, Kettiger H, Schipanski A, Wick P (2013) Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int J Nanomed 3255. https://doi.org/10.2147/IJN.S49770

  27. Mirzaei M, Razi M, Sadrkhanlou R (2017) Nanosilver particles increase follicular atresia: correlation with oxidative stress and aromatization. Environ Toxicol 32(10):2244–2255. https://doi.org/10.1002/tox.22440

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. Acs Nano 4(6):3181–3186. https://doi.org/10.1021/nn1007176

    Article  CAS  PubMed  Google Scholar 

  29. Lee JH, Ju JE, Kim BI, Pak PJ, Choi E, Lee H, Chung N (2014) Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem 33(12):2759–2766. https://doi.org/10.1002/etc.2735

    Article  CAS  PubMed  Google Scholar 

  30. Chang L, Lu Z, Li D, Zhang L, Wang Z, Du Q, Huang Y, Zhao X, Tong D (2018) Melamine causes testicular toxicity by destroying blood-testis barrier in piglets. Toxicol Lett 296:114–124. https://doi.org/10.1016/j.toxlet.2018.07.019

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Zhang X, Hu L, L H (2018) Exogenous leptin affects sperm parameters and impairs blood testis barrier integrity in adult male mice. Reprod Biol Endocrin 16(1):55. https://doi.org/10.1186/s12958-018-0368-4

  32. Shuang D (2016) Effect of zearalenone on blood-testis barrier in male mice. Shenyang Agricultural University, Shenyang, Master

    Google Scholar 

  33. Hong F, Wang Y, Zhou Y, Zhang Q, Ge Y, Chen M, Hong J, Wang L (2015) Exposure to TiO2 nanoparticles induces immunological dysfunction in mouse testitis. J Agr Food Chem 64(1):346–355. https://doi.org/10.1021/acs.jafc.5b05262

    Article  CAS  Google Scholar 

  34. Blasig IE, Bellmann C, Cording J, Vecchio GD, Zwanziger D, Huber O, Haseloff RF (2011) Occludin protein family: oxidative stress and reducing conditions. Antioxid Redox Sign 15(5):1195–1219. https://doi.org/10.1089/ars.2010.3542

    Article  CAS  Google Scholar 

  35. Long M, Yang S, Dong S, Chen X, Zhang Y, He J (2017) Characterization of semen quality, testicular marker enzyme activities and gene expression changes in the blood testis barrier of Kunming mice following acute exposure to zearalenone. Environ Sci Pollut R 24(35):27235–27243. https://doi.org/10.1007/s11356-017-0299-1

    Article  CAS  Google Scholar 

  36. Islam R, Yoon H, Kim B, Bae H, Shin H, Kim W, Yoon W, Lee Y, Woo KM, Baek J, Ryoo H (2017) Blood-testis barrier integrity depends on Pin1 expression in Sertoli cells. Sci Rep-Uk 7(1):1–12. https://doi.org/10.1038/s41598-017-07229-1

    Article  CAS  Google Scholar 

  37. Pinsino A, Russo R, Bonaventura R, Brunelli A, Marcomini A, Matranga V (2015) Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway. Sci Rep-Uk 5(1):1–12. https://doi.org/10.1038/srep14492

    Article  CAS  Google Scholar 

  38. Yabing C, Wang J, Chun P (2018) Microcystin-leucine-arginine causes blood-testis barrier disruption and degradation of Occludin mediated by matrix metalloproteinase-8. Cell Mol Life Sci 6(75):1117–1132. https://doi.org/10.1007/s00018-017-2687-6

    Article  CAS  Google Scholar 

  39. Nah WH, Lee JE, Park HJ, Park NC, Gye MC (2011) Claudin-11 expression increased in spermatogenic defect in human testes. Fertil Steril 95(1):385–388. https://doi.org/10.1016/j.fertnstert.2010.08.023

    Article  CAS  PubMed  Google Scholar 

  40. Gonçalves DM, D G (2011) Titanium dioxide (TiO2) nanoparticles induce neutrophil influx and local production of several pro-inflammatory mediators in vivo. Int Immunopharmacol 8(11):1109–1115. https://doi.org/10.1016/j.intimp.2011.03.007

    Article  CAS  Google Scholar 

  41. Schulster M, Bernie AM, Ramasamy R (2016) Male fertility the role of estradiol in male reproductive function. Asian J Androl. https://doi.org/10.4103/1008-682X.173932

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu J, Ren L, Wei J, Zhang J, Zhu Y, Li X, Jing L, Duan J, Zhou X, Sun Z (2018) Fine particle matter disrupts the blood-testis barrier by activating TGF-β3/p38 MAPK pathway and decreasing testosterone secretion in rat. Environ Toxicol 33(7):711–719. https://doi.org/10.1002/tox.22556

    Article  CAS  PubMed  Google Scholar 

  43. Su L, Mruk DD, Lui WY, Lee WM, Cheng CY (2011) P-glycoprotein regulates blood-testis barrier dynamics via its effects on the occludin/zonula occludens 1 (ZO-1) protein complex mediated by focal adhesion kinase (FAK). Proc Natl Acad Sci 108(49):19623–19628. https://doi.org/10.1073/pnas.1111414108

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ogunsuyi OM, Ogunsuyi OI, Akanni O, Alabi OA, Alimba CG, Adaramoye OA, Cambier S, Eswara S, Gutleb AC, Bakare AA (2020) Alteration of sperm parameters and reproductive hormones in Swiss mice via oxidative stress after co-exposure to titanium dioxide and zinc oxide nanoparticles. Andrologia 16:e13758. https://doi.org/10.1111/and.13758

    Article  CAS  Google Scholar 

  45. Ozgur ME, Ulu A, Noma S, Ozcan I, Balcioglu S, Ates B, Koytepe S (2020) Melatonin protects sperm cells of Capoeta trutta from toxicity of titanium dioxide nanoparticles. Environ Sci Pollut Res Int 27(15):17843–17853. https://doi.org/10.1007/s11356-020-08273-7

    Article  CAS  PubMed  Google Scholar 

  46. Jafari A, Karimipour M, Khaksar MR, Ghasemnejad-Berenji M (2019) Protective effects of orally administered thymol against titanium dioxide nanoparticle–induced testicular damage. Environmental science and pollution research international 27(2):2353–2360. https://doi.org/10.1007/s11356-019-06937-7

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant No. 21966027, 81560536) and Xinjiang Uygur Autonomous region Project (XJ2019G092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanling Song or Shuxia Guo.

Ethics declarations

All animal procedures were approved by the Animal Experiments Committee of the first affiliated Hospital of Medical College of Shihezi University (Approval NO. A2016-117-01).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Ling, C., Hu, M. et al. Effect of Nano-Titanium Dioxide on Blood-Testis Barrier and MAPK Signaling Pathway in Male Mice. Biol Trace Elem Res 199, 2961–2971 (2021). https://doi.org/10.1007/s12011-020-02404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02404-4

Keywords

Navigation