Skip to main content
Log in

Uptake and Distribution Characteristic and Health Risk Assessment of Heavy Metal(loid)s in Platycodon Grandiflorum (Jacq.) A.DC. with Growth from a Medicinal Herb Garden of Xi’an, China

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The different parts of Platycodon grandiflorum were collected from a medicinal herb garden to determine five heavy metal(loid)s (Pb, Cd, As, Hg, and Cu) contents at different growth stages. The data showed that the plant accumulated varying amounts of metal(loid)s in the order Cu > Hg > Pb > As > Cd. Five heavy metal(loid) concentrations decreased in the early growth stage and then increased in the flowering season. The contents of heavy metal(loid)s except Hg in the stem were relatively lower than other tissues. The flower of Platycodon grandiflorum can highly accumulate heavy metal(loid)s, especially for Cu in the flowering period. Pb, Cd, and Cu contents in stem generally increased with growth time, while Cd and Cu in root decreased during growth time. The average daily intake doses of five heavy metal(loid)s in the root of Platycodon grandiflorum were all below the safety guideline and the target hazard quotient was less than 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wang L, Peng X, Fu H, Huang C, Li Y, Liu Z (2019) Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food. Biosens Bioelectron 147:111777

    Article  PubMed  CAS  Google Scholar 

  2. Duan R, Li Y, Li H, Yang J (2019) Detection of heavy metal ions using whispering gallery mode lasing in functionalized liquid crystal microdroplets. Biomed Opt Express 10(12):6073–6083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gyamfi ET (2019) Metals and metalloids in traditional medicines (Ayurvedic medicines, nutraceuticals and traditional Chinese medicines). Environ Sci Pollut Res 26:15767–15778

    Article  CAS  Google Scholar 

  4. Lee GA, Song JY, Sung JS, Choi YM, Lee JR, Lee SY, Kim CY, Kim YG, Lee MC (2012) Analysis of population structure and genetic diversity in balloon flower (Platycodon grandiflorum (Jacq.) A. DC.) germplasm using simple sequence repeat (SSR) markers. J Crop Sci Biotechnol 15(4):281–287

    Article  CAS  Google Scholar 

  5. Nyakudya E, Jeong JH, Lee NK, Jeong YS (2014) Platycosides from the roots of Platycodon grandiflorum and their health benefits. Prev Nutr Food Sci 19(2):59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deng JX, Paul NC, Li MJ, Cho HS, Lee HB, Yu SH (2014) Stemphylium platycodontis sp nov., isolated from Platycodon grandiflorus in Korea. Mycol Prog 13(3):477–482

    Article  Google Scholar 

  7. Zhang L, Wang YL, Yang DW, Zhang CH, Zhang N, Li MH, Liu YZ (2015) Platycodon grandiflorus-an ethnopharmacological, phytochemical and pharmacological review. J Ethnopharmacol 164:147–161

    Article  CAS  PubMed  Google Scholar 

  8. Arpadjan S, Celik G, Taskesen S, Gucer S (2008) Arsenic, cadmium and lead in medicinal herbs and their fractionation. Food Chem Toxicol 46(8):2871–2875

    Article  CAS  PubMed  Google Scholar 

  9. Zhang JH, Wider B, Shang HC, Li XM, Ernst E (2012) Quality of herbal medicines: challenges and solutions. Complement Ther Med 20(1–2):100–106

    Article  PubMed  Google Scholar 

  10. Kim D, Kim B, Yun E, Kim J, Chae Y, Park S (2013) Statistical quality control of total ash, acid-insoluble ash, loss on drying, and hazardous heavy metals contained in the component medicinal herbs of “Ssanghwatang”, a widely used oriental formula in Korea. J Nat Med 67(1):27–35

    Article  CAS  PubMed  Google Scholar 

  11. Guo Y, Qiu C, Long S, Wang H, Wang Y (2020) Cadmium accumulation, translocation, and assessment of eighteen Linum usitatissimum L. cultivars growing in heavy metal contaminated soil. Int J Phytoremediation 195:110520

    Google Scholar 

  12. Ashraf MY, Roohi M, Iqbal Z, Ashraf M, Ozturk M, Gucel S (2016) Cadmium (Cd) and lead (Pb) induced changes in growth, some biochemical attributes, and mineral accumulation in two cultivars of mung bean [Vigna radiata (L.) Wilczek]. Commun Soil Sci Plant Anal 47(4):405–413

    CAS  Google Scholar 

  13. Li J, Wang YB, Yang HF, Yu PX, Tang YY (2018) Five heavy metals accumulation and health risk in a traditional Chinese medicine Cortex Moutan collected from different sites in China. Hum Ecol Risk Assess 24(8):2288–2298

    Article  CAS  Google Scholar 

  14. Parveen R, Abbasi AM, Shaheen N, Shah MH (2017) Accumulation of selected metals in the fruits of medicinal plants grown in urban environment of Islamabad, Pakistan. Arab J Chem 13(1):308–317

    Article  CAS  Google Scholar 

  15. Kim WI, Noh HM, Hong CO, Kim DY, Kim KR, Oh KS, Moon BC, Kim JY (2017) Identification of transition characteristics and bio-concentration factors of heavy metal (loid)s in the selected perennial root medicinal plants. Korean J Soil Sci Fert 50(4):251–258

    Article  CAS  Google Scholar 

  16. Wei QH, Luo Y, Xiao FQ, He XL, Wang DF (2012) AAS determination of Pb and Cd in Platycodon Ggrandiforus. Research and Practice on Chinese Medicines 26(5):14–16

    CAS  Google Scholar 

  17. Cho MJ, Choi H, Kim HJ, Youn HJ (2016) Monitoring and risk assessment of heavy metals in perennial root vegetables. Korean Journal of Environmental Agriculture 35(1):55–61

    Article  Google Scholar 

  18. Jiang DJ, Huang J (2017) Analysis and contents determination of heavy metals in platycodon grandiflorus at different altitude in the three gorges reservoir area. China Pharmacy 28(12):1687–1691

    Google Scholar 

  19. Zhao HS, Jin CS, Liu JY, Wu DL, Peng DY, Huang L, Gui SY (2015) Determination of the content of total saponins and heavy metals in radix Platycodonis from different sources. Research and Practice on Chinese Medicines 29(1):29–31 41

    CAS  Google Scholar 

  20. Adejumoa SA, Ogundiran MB, Toguna AO (2018) Soil amendment with compost and crop growth stages influenced heavy metal uptake and distribution in maize crop grown on lead-acid battery waste contaminated soil. J Environ Chem Eng 6:4809–4819

    Article  CAS  Google Scholar 

  21. Kozak L, Kokocinski M, Niedzielski P, Lorenc S (2015) Bioaccumulation of metals and metalloids in medicinal plant ipomoea pes-caprae from areas impacted by tsunami. Environ Toxicol Chem 34(2):252–257

    Article  CAS  PubMed  Google Scholar 

  22. Liu ZF, Sun HW, Shen SG, Li LQ, Shi HM (2005) Simultaneous determination of total arsenic and total selenium in Chinese medicinal herbs by hydride generation atomic fluorescence spectrometry in tartaric acid medium. Anal Chim Acta 550:151–155

    Article  CAS  Google Scholar 

  23. Okem A, Southway C, Ndhlala AR, Van Staden J (2012) Determination of total and bioavailable heavy and trace metals in South African commercial herbal concoctions using ICP-OES. S Afr J Bot 82:75–82

    Article  CAS  Google Scholar 

  24. Tokalıoğlu Ş (2012) Determination of trace elements in commonly consumed medicinal herbs by ICP-MS and multivariate analysis. Food Chem 134:2504–2508

    Article  PubMed  CAS  Google Scholar 

  25. Khuder A, Sawan MK, Karjou J, Razouk AK (2009) Determination of trace elements in Syrian medicinal plants and their infusions by energy dispersive X-ray fluorescence and total reflection X-ray fluorescence spectrometry. Spectrochim Acta B 64:721–725

    Article  CAS  Google Scholar 

  26. Montanha GS, Rodrigues ES, Romeua SLZ, de Almeida E, Reis AR, Lavres J Jr, Pereira de Carvalhoa HW (2020) Zinc uptake from ZnSO4 (aq) and Zn-EDTA (aq) and its root-to-shoot transport in soybean plants (Glycine max) probed by time-resolved in vivo X-ray spectroscopy. Plant Sci 292:110370

    Article  CAS  PubMed  Google Scholar 

  27. U.S. Environmental Protection Agency, Human health risk assessment. https://www.epa.gov/risk/human-health-risk-assessmenthttps://www.epa.gov/risk/human-health-risk-assessment. Accessed 3 Jun 2020

  28. Kohzadi S, Shahmoradi B, Ghaderi E, Loqmani H, Maleki A (2019) Concentration, source, and potential human health risk of heavy metals in the commonly consumed medicinal plants. Biol Trace Elem Res 187:41–50

    Article  CAS  PubMed  Google Scholar 

  29. Alhusban AA, Ata SA, Shraim SA (2019) The safety assessment of toxic metals in commonly used pharmaceutical herbal products and traditional herbs for infants in jordanian market. Biol Trace Elem Res 187:307–315

    Article  CAS  PubMed  Google Scholar 

  30. Sipos G, Solti Á, Czech V, Vashegyi I, Tóth B, Cseh E, Fodor F (2013) Heavy metal accumulation and tolerance of energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1) grown in hydroponic culture. Plant Physiol Biochem 68:96–103

    Article  CAS  PubMed  Google Scholar 

  31. Mani D, Kumar C, Patel NK, Sivakumar D (2015) Enhanced clean-up of lead-contaminated alluvial soil through Chrysanthemum indicum L. Int J Environ Sci Technol 12(4):1211–1222

    Article  CAS  Google Scholar 

  32. United States Environmental protection Agency (1992) Guidelines for exposure assessment. Fed Regist 57(104):22888–22938

    Google Scholar 

  33. Zhang J, Yang R, Chen R, Peng Y, Wen X, Gao L (2018) Accumulation of heavy metals in tea leaves and potential health risk assessment: a case study from Puan County, Guizhou Province, China. Int J Environ Res Public Health 15:133

    Article  PubMed Central  CAS  Google Scholar 

  34. Chinese Pharmacopoeia Committee (2015) Chinese Pharmacopoeia. China Medicinal Science and Technology Press, Beijing

    Google Scholar 

  35. Pan L, Wang Y, Ma J, Hu Y, Su B, Fang G, Wang L, Xiang B (2018) A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ Sci Pollut Res 25(2):1055–1069

    Article  CAS  Google Scholar 

  36. Liu LH, Zhang Y, Yun ZJ, He B, Zhang QH, Hu LG, Jiang GB (2018) Speciation and bioaccessibility of arsenic in traditional Chinese medicines and assessment of its potential health risk. Sci Total Environ 619:1088–1097

    PubMed  Google Scholar 

  37. United States Environmental protection Agency (2009) Risk-based concentration table. Washington D.C., Philadelphia

  38. Guo J, Yue TL, Li XT, Yuan YH (2016) Heavy metal levels in kiwifruit orchard soils and trees and its potential health risk assessment in Shaanxi, China. Environ Sci Pollut Res 23(14):14560–14566

    Article  CAS  Google Scholar 

  39. Zhu FK, Wang XJ, Fan WX, Qu L, Qiao MY, Yao SW (2013) Assessment of potential health risk for arsenic and heavy metals in some herbal flowers and their infusions consumed in China. Environ Monit Assess 185(5):3909–3916

    Article  CAS  PubMed  Google Scholar 

  40. Wang ZZ, Wang HB, Wang HJ, Li QC, Li Y (2019) Heavy metal pollution and potential health risks of commercially available Chinese herbal medicines. Sci Total Environ 653:748–757

    Article  CAS  PubMed  Google Scholar 

  41. Hallenbeck WH (1993) Quantitative risk assessment for environmental and occupational health, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  42. Wang XL, Sato T, Xing BS, Tao S (2005) Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci Total Environ 350(1–3):28–37

    Article  CAS  PubMed  Google Scholar 

  43. Saha N, Zaman MR (2013) Evaluation of possible health risks of heavy metals by consumption of foodstuffs available in the central market of Rajshahi City, Bangladesh. Environ Monit Assess 185(5):3867–3878

    Article  CAS  PubMed  Google Scholar 

  44. Ministry of Foreign Trade and Economic Cooperation of China (2005) Green standards of medicinal plants and preparations for foreign trade and economy. Ministry of Foreign Trade and Economic Cooperation of China, WM/T 2-2004. Beijing, China

  45. Filipiak-Szok A, Kurzawa M, Szlyk E (2015) Determination of toxic metals by ICP-MS in Asiatic and European medicinal plants and dietary supplements. J Trace Elem Med Biol 30:54–58

    Article  CAS  PubMed  Google Scholar 

  46. Huang WL, Bai ZQ, Jiao J, Yuan HL, Bao ZA, Chen SN, Ding MH, Liang ZS (2019) Distribution and chemical forms of cadmium in Coptis chinensis Franch. determined by laser ablation ICP-MS, cell fractionation, and sequential extraction. Ecotoxicol Environ Saf 171:894–903

    Article  CAS  PubMed  Google Scholar 

  47. Hajar EWI, Sulaiman AZB, Sakinah AMM (2014) Assessment of heavy metals tolerance in leaves, stems and flowers of stevia rebaudiana plant. Procedia Environ Sci 20:386–393

    Article  CAS  Google Scholar 

  48. Xu P, Sun CX, Ye XZ, Xiao WD, Zhang Q, Wang Q (2016) The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicol Environ Saf 132:94–100

    Article  CAS  PubMed  Google Scholar 

  49. Sungur A, Soylak M, Yilmaz S, Ozcan H (2016) Heavy metal mobility and potential availability in animal manure: using a sequential extraction procedure. J Mater Cycles Waste Manag 18:563–572

    Article  CAS  Google Scholar 

  50. Zimmerman AJ, Weindorf DC (2010) Heavy metal and trace metal analysis in soil by sequential extraction: a review of procedures. Int J Anal Chem 2010:387803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yu HY, Liu CP, Zhu JS, Li FB, Deng DM, Wang Q, Liu CS (2016) Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environ Pollut 209:38–45

    Article  CAS  PubMed  Google Scholar 

  52. Honma T, Ohba H, Kaneko-Kadokura A, Makino T, Nakamura K, Katou H (2016) Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ Sci Technol 50(8):4178–4185

    Article  CAS  PubMed  Google Scholar 

  53. Wan YN, Huang QQ, Wang Q, Yu Y, Su DC, Qiao YH, Li HF (2020) Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure. J Hazard Mater 384:121293

    Article  CAS  PubMed  Google Scholar 

  54. Huang YX, Zhao LJ, Keller AA (2017) Interactions, transformations, and bioavailability of nano-copper exposed to root exudates. Environ Sci Technol 51(17):9774–9783

    Article  CAS  PubMed  Google Scholar 

  55. Yi GH, Peng PH (2007) Absorption and accumulation characteristics of the rhizome of genuine Chinese medicine material Ligusticum chuanxiong hort. Produced in Sichuan province to heavy metals in soil. J Anhui Agric Sci 35:10744–10745

    Google Scholar 

  56. Joint Food and Agricultural Organisation/World Health Organisation (FAO/WHO) (1995) General standard for contaminants and toxins in food and feed. Codex Alimentarius. https://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/. Accessed 3 Jun 2020

  57. Zuo TT, Li YL, He HZ, Jin HY, Zhang L, Sun L, Gao F, Wang Q, Shen YJ, Ma SC, He LC (2019) Refined assessment of heavy metal-associated health risk due to the consumption of traditional animal medicines in humans. Environ Monit Assess 191(3):171. https://doi.org/10.1007/s10661-019-7270-1

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Key Research and Development Projects in Shaanxi Province of China (No. 2020SF-319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangde Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, G., Meng, X., Song, N. et al. Uptake and Distribution Characteristic and Health Risk Assessment of Heavy Metal(loid)s in Platycodon Grandiflorum (Jacq.) A.DC. with Growth from a Medicinal Herb Garden of Xi’an, China. Biol Trace Elem Res 199, 2770–2778 (2021). https://doi.org/10.1007/s12011-020-02364-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02364-9

Keywords

Navigation