Skip to main content

Advertisement

Log in

Dental Fluorosis: the Risk of Misdiagnosis—a Review

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Fluoride has been considered as the single factor most frequently responsible for causing enamel mottling. However, in humans, either endogenous and/or exogenous factors not related to fluoride exposure may also cause enamel mottling. In this sense, various studies in the international literature have reported severe mottling of the teeth that could not be attributed to fluoride exposure. Thus, misdiagnosis of non-fluoride-induced enamel defects may occur frequently. Reports of unexpectedly high population prevalence and individual cases of fluorosis, where such diagnoses are irreconcilable with the identified fluoride history, highlight the necessity for a more precise definition and diagnosis of dental fluorosis. Also, a more discriminating diagnostic procedure is suggested. Particularly, positive identification of environmental fluoride levels to which the communities and individuals are exposed shall be developed before the confirmation of a diagnosis of fluorosis. It is considered that a more critical methodology for the diagnosis of fluorosis will be helpful in the rational use and control of fluorides for dental health, and in the identification of factors that may induce enamel defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aoba T, Fejerskov O (2002) Dental fluorosis: chemistry and biology. Crit Rev Oral Biol Med 13(2):155–170

    CAS  PubMed  Google Scholar 

  2. National Research Council (NRC) (1993) Health effects of ingested fluoride. National Academy Press, Washington. https://doi.org/10.17226/2204

    Book  Google Scholar 

  3. National Research Council (NRC) (2006) Fluoride in drinking water: a scientific review of EPA’s standards. National Academies Press, Washington. https://doi.org/10.17226/11571

    Book  Google Scholar 

  4. Cutress TW, Suckling GW (1990) Differential diagnosis of dental fluorosis. J Dent Res 69(714–20):721

    Google Scholar 

  5. Yoshimura K, Nakahashi T, Saito K (2006) Why did the ancient inhabitants of Palmyra suffer fluorosis? J Archaeol Sci 33:1411–1418. https://doi.org/10.1016/j.jas.2006.01.016

    Article  Google Scholar 

  6. Oruc N (2008) Occurrence and problems of high fluoride waters in Turkey: an overview. Environ Geochem Health 30:315–323. https://doi.org/10.1007/s10653-008-9160-2

    Article  CAS  PubMed  Google Scholar 

  7. Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L et al (2006) Fluoride in drinking-water. World Health Organization, Geneva

    Google Scholar 

  8. Khairnar MR, Dodamani AS, Jadhav HC, Naik RG, Deshmukh MA (2015) Mitigation of fluorosis. A Review. J Clin Diagn Res 9(6):ZE05–ZE09

    PubMed  PubMed Central  Google Scholar 

  9. Yoder KM, Mabelya L, Robison VA, Dunipace AJ, Brizendine EJ, Stookey GK (1998) Severe dental fluorosis in a Tanzanian population consuming water with negligible fluoride concentration. Commun Dent Oral Epidemiol 26(6):382–393

    CAS  Google Scholar 

  10. Awadia AK, Birkeland JM, Haugejorden O, Bjorvatn K (2000) An attempt to explain why Tanzanian children drinking water containing 0.2 or 3.6 mg fluoride per liter exhibit a similar level of dental fluorosis. Clin Oral Investig 4(4):238–244

    CAS  PubMed  Google Scholar 

  11. Choubisa SL, Choubisa D (2015) Neighbourhood fluorosis in people residing in the vicinity of superphosphate fertilizer plants near Udaipur city of Rajasthan (India). Environ Monit Assess 187(8):497

    PubMed  Google Scholar 

  12. Khatibikamal V, Torabiana A, Janpoor F, Hoshyaripour G (2010) Fluoride removal from industrial wastewater using electrocoagulation and its adsorption kinetics. J Hazard Mater 179:276–280

    CAS  PubMed  Google Scholar 

  13. Guijian L, Liugen Z, Duzgoren-Aydin NS, Lianfen G, Junhua L, Zicheng P (2007) Health effects of arsenic, fluorine, and selenium from indoor burning of Chinese coal. Rev Environ Contam Toxicol 189:89–106

    PubMed  Google Scholar 

  14. Zohoori FV, Innerd A, Azevedo LB, Whitford GM, Maguire A (2015) Effect of exercise on fluoride metabolism in adult humans: a pilot study. Sci Rep 5:16905. https://doi.org/10.1038/srep16905

    Article  CAS  Google Scholar 

  15. Touger-Decker R, Holt K, Krall EA, Nielsen FH, American Dietetic Association (2001) Position of The American Dietetic Association: the impact of fluoride on health. J Am Diet Assoc 101(1):126–132

    Google Scholar 

  16. SCHER (Scientific Committee on Health and Environmental Risks) (2011) Critical review of any new evidence on the hazard profile, health effects, and human exposure to fluoride and the fluoridating agents of drinking water. 1–50

  17. Sauerheber R (2013) Physiologic conditions affect toxicity of ingested industrial fluoride. J Environ Public Health 2013:1–13. https://doi.org/10.1155/2013/439490

    Article  CAS  Google Scholar 

  18. Barbier O, Arreola-Mendoza L, Razo LMD (2010) Molecular mechanisms of fluoride toxicity. Chem Biol Interact 188:319–333

    CAS  PubMed  Google Scholar 

  19. DenBesten P, Li W (2011) Chronic fluoride toxicity: dental fluorosis. Monogr Oral Sci 22:81–96

    PubMed  PubMed Central  Google Scholar 

  20. Lyaruu DM, Medina JF, Sarvide S, Bervoets TJM, Everts V, DenBesten P, Smith CE, Bronckers ALJJ (2014) Barrier formation: potential molec mechan enam fluor. J Dent Res 93(1):96–102

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Thylstrup A, Fejerskov O (1978) Clinical appearance of dental fluorosis in permanent teeth in relation to histologic changes. Community Dent Oral Epidemiol 6(6):315–328

    CAS  PubMed  Google Scholar 

  22. Fejerskov O, Thylstrup A, Larsen MJ (1977) Clinical and structural features and possible pathogenic mechanisms of dental fluorosis. Eur J Oral Sci 85(7):510–534

    CAS  Google Scholar 

  23. García-Montalvo EA, Reyes-Pérez H, Del-Razo LM (2009) Fluoride exposure impairs glucose tolerance via decreased insulin expression and oxidative stress. Toxicology 263:75–83

    PubMed  Google Scholar 

  24. Morales-González JA, Gutiérrez-Salinas J, García-Ortiz L, Del Carmen C-GM, Madrigal-Santillán E, Esquivel-Soto J, Esquivel-Chirino C, González-Rubio MG (2010) Effect of sodium fluoride ingestion on malondialdehyde concentration and the activity of antioxidant enzymes in rat erythrocytes. Int J Mol Sci 11(6):2443–2452

    PubMed  PubMed Central  Google Scholar 

  25. Penn AH, Hugli TE, Schmid-Schönbein GW (2007) Pancreatic enzymes generate cytotoxic mediators in the intestine. Shock 27(3):296–304

    CAS  PubMed  Google Scholar 

  26. Fahrney DE, Gold AM (1963) Sulfonyl fluorides as inhibitors of esterases. I. Rates of reaction with acetylcholinesterase, α-chymotrypsin, and trypsin. J Am Chem Soc 85(7):997–1000

    CAS  Google Scholar 

  27. Yamaguti PM, Simões A, Ganzerla E, Souza DN, Nogueira FN, Nicolau J (2013) Effects of single exposure of sodium fluoride on lipid peroxidation and antioxidant enzymes in salivary glands of rats. Oxidative Med Cell Longev 2013:1–7. https://doi.org/10.1155/2013/674593

    Article  CAS  Google Scholar 

  28. Grucka-Mamczar E, Birkner E, Zalejska-Fiolka J, Machoy Z, Kasperczyk S, Blaszczyk I (2007) Influence of extended exposure to sodium fluoride and caffeine on the activity of carbohydrate metabolism enzymes in rat blood serum and liver. Fluoride 40:62–66

    CAS  Google Scholar 

  29. Strunecka A, Patocka J, Blaylock RL, Chinoy NJ (2007) Fluoride interactions: from molecules to disease. Curr Signal Transduct Ther 2:190–213

    CAS  Google Scholar 

  30. Grucka-Mamczar E, Birkner E, Kasperczyk S, Kasperczyk A, Chlubek D, Samujlo D, Ceglowska A (2004) Lipid balance in rats with fluoride induced hyperglycemia. Fluoride 37:195–200

    CAS  Google Scholar 

  31. Chlubek D, Grucka-Mamczar E, Birkner E, Polaniak R, Stawiarska-Pieta B, Duliban H (2003) Activity of pancreatic antioxidative enzymes and malondialdehyde concentrations in rats with hyperglycemia caused by fluoride intoxication. J Trace Elem Med Biol 17:57–60

    CAS  PubMed  Google Scholar 

  32. Sharma C, Suhalka P, Sukhwal P, Jaiswal N, Bhatnagar M (2014) Curcumin attenuates neurotoxicity induced by fluoride: an in vivo evidence. Pharmacogn Mag 10(37):61–65

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Choi AL, Sun G, Zhang Y, Grandjean P (2012) Developmental fluoride neurotoxicity: a systematic review and meta-analysis. Environ Health Perspect 120:1362–1368

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang QQ, Du J, Ma HH, Jiang SJ, Zhou XJ (2008) Fluoride and children’s intelligence: a meta-analysis. Biol Trace Elem Res 126(1–3):115–120

    CAS  PubMed  Google Scholar 

  35. Sebastian ST, Sunitha S (2015) A cross-sectional study to assess the intelligence quotient (IQ) of school going children aged 10-12 years in villages of Mysore district, India with different fluoride levels. J Indian Soc Pedod Prev Dent 33(4):307–311

    PubMed  Google Scholar 

  36. Seraj B, Shahrabi M, Shadfar M, Ahmadi R, Fallahzadeh M, Eslamlu HF, Kharazifard MJ (2012) Effect of high-water fluoride concentration on the intellectual development of children in Makoo/Iran. J Dent (Tehran) 9(3):221–229

    CAS  Google Scholar 

  37. Ding Y, Gao Y, Sun H, Han H, Wang W, Ji X, Liu X, Sun D (2011) The relationships between low levels of urine fluoride on children’s intelligence, dental fluorosis in endemic fluorosis areas in Hulunbuir, Inner Mongolia, China. J Hazard Mater 186(2–3):1942–1946

    CAS  PubMed  Google Scholar 

  38. Saxena S, Sahay A, Goel P (2012) Effect of fluoride exposure on the intelligence of school children in Madhya Pradesh, India. J Neurosci Rural Pract 3(2):144–149

    PubMed  PubMed Central  Google Scholar 

  39. Khan SA, Singh RK, Navit S, Chadha D, Johri N, Navit P, Sharma A, Bahuguna R (2015) Relationship between dental fluorosis and intelligence quotient of school going children in and around Lucknow District: a cross-sectional study. J Clin Diagn Res 9(11):ZC10–ZC15

    PubMed  PubMed Central  Google Scholar 

  40. Malin AJ, Till C (2015) Exposure to fluoridated water and attention deficit hyperactivity disorder prevalence among children and adolescents in the United States: an ecological association. Environ Health 14:17

    PubMed  PubMed Central  Google Scholar 

  41. Peckham S, Lowery D, Spencer S (2015) Are fluoride levels in drinking water associated with hypothyroidism prevalence in England? A large observational study of GP practice data and fluoride levels in drinking water. J Epidemiol Community Health 69(7):619–624

    CAS  PubMed  Google Scholar 

  42. Merdad HE (2013) Predicting dental fluorosis using indicators of childhood obesity. Conference Paper. Conference: IADR/AADR/CADR General Session and Exhibition

  43. Galkina IV, Gavrilova OA, Piekalnits II, Dianov OA (2015) Dental status in children and adolescents diagnosed with obesity. Stomatologiia (Mosk) 94(1):57–58

    Google Scholar 

  44. Pindborg JJ (1982) Aetiology of developmental enamel defects not related to fluorosis. Int Dent J 32(2):123–134

    CAS  PubMed  Google Scholar 

  45. Wong HM (2014) Aetiological factors for developmental defects of enamel. Austin J Anat 1(1):1003

    Google Scholar 

  46. Anthonappa NM, Robert PP (2015) Enamel defects in the permanent dentition: prevalence and etiology. In: Drummond BK, Kilpatrick N (eds) Book planning and care for children and adolescents with dental enamel defects etiology, research and contemporary management, 1st edn. Springer-Verlag, Heidelberg

    Google Scholar 

  47. Seow WK (1993) Clinical diagnosis and management strategies of amelogenesis imperfect variants. Pediatr Dent 15(6):384–393

    CAS  PubMed  Google Scholar 

  48. Jimenez-Farfan MD, Hernandez-Guerrero JC, Loyola-Rodriguez JP, Ledesma-Montes C (2004) Fluoride content in bottled waters, juices and carbonated soft drinks in Mexico City, Mexico. Int J Paediatr Dent 14(4):260–266

    CAS  PubMed  Google Scholar 

  49. Heilman JR, Kiritsy MC, Levy SM, Wefel JS (1999) Assessing fluoride levels of carbonated soft drinks. J Am Dent Assoc 130(11):1593–1599

    CAS  PubMed  Google Scholar 

  50. Curzon ME, Spector PC (1977) Enamel mottling in a high strontium area of the U.S.A. Community Dent Oral Epidemiol 5(5):243–247

    CAS  PubMed  Google Scholar 

  51. Paz S, Jaudenes JR, Gutiérrez AJ, Rubio C, Hardisson A, Revert C (2017) Determination of fluoride in organic and non-organic wines. Biol Trace Elem Res 178:153–159

    CAS  PubMed  Google Scholar 

  52. Rubio C, Rodríguez I, Jaudenes JR, Gutiérrez AJ, Paz S, Burgos A, Hardisson A, Revert C (2020) Fluoride levels in supply water from a volcanic area in the Macaronesia region. Environ Sci Pollut Res Int 27:11587–11595. https://doi.org/10.1007/s11356-020-07702-x

    Article  CAS  PubMed  Google Scholar 

  53. Gómez-Santos G, González-Sierra MA, Vázquez-García-Machiñena J (2008) Evolution of caries and fluorosis in schoolchildren of the Canary Islands (Spain): 1991, 1998, 2006. Med Oral Patol Oral Cir Bucal 13(9):E599–E608

    PubMed  Google Scholar 

  54. Jáudenes Marrero JR, Hardisson de la Torre A, Gutiérrez Fernández AJ, Rubio Armendáriz C, Revert Gironés C (2015) Toxic risk assessment of fluoride presence in bottled water consumption in the Canary Islands. Nutr Hosp 32(5):2261–2268. https://doi.org/10.3305/nh.2015.32.5.9701

    Article  CAS  PubMed  Google Scholar 

  55. Sabokseir A, Golkari A, Sheiham A (2016) Distinguishing between enamel fluorosis and other enamel defects in permanent teeth of children. PeerJ 4:e1745. https://doi.org/10.7717/peerj.1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Santos Ortiz A, Tomazoni F, Klöckner Knorst J, Machado Ardenghi T (2019) Influence of socioeconomic inequalities on levels of dental caries in adolescents: a cohort study. Int J Paediatr Dent 30(1):42–49

    Google Scholar 

  57. Tomazoni F, Vettore MV, Mendes FM, Ardenghi TM (2019) The association between sense of coherence and dental caries in low social status schoolchildren. Caries Res 53:314–321. https://doi.org/10.1159/000493537

    Article  PubMed  Google Scholar 

  58. Yi J, Cao J (2008) Tea and fluorosis. J Fluor Chem 129(2):76–81

    CAS  Google Scholar 

  59. Chandrajith R, Abeypala U, Dissanyake CB, Tobschal HJ (2007) Fluoride in Ceylon tea and its implications to dental health. Environ Geochem Health 29:429–434

    CAS  PubMed  Google Scholar 

  60. Pontigo-Loyola AP, Medina-Solís CE, Lara-Carrillo E, Patiño-Marín N, Escoffié-Ramirez M, Mendoza-Rodríguez M, De la Rosa-Santillana R, Maupomé G (2014) Impact of socio-demographic, socioeconomic, and water variables on dental fluorosis in adolescents growing up during the implementation of a fluoridated domestic salt program. Odontology 102:105–115

    PubMed  Google Scholar 

  61. Fc L, Yan SL, Qin AN, Liou GY, Xie WF, Gou JF (2007) The relations between dental fluorosis and economic status in Shuicheng, a fluorosis-endemic county in Guizhou province. Zhonghua Yu Fang Yi Xue Za Zhi 41(S):119–122

    Google Scholar 

  62. Rugg-Gunn AJ, Al-Mohammadi SM, Butler TJ (1997) Effects of fluoride level in drinking water, nutritional status, and socio- economic status on the prevalence of developmental defects of dental enamel in permanent teeth in Saudi 14-year-old boys. Caries Res 31:259–267

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soraya Paz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revelo-Mejía, I.A., Hardisson, A., Rubio, C. et al. Dental Fluorosis: the Risk of Misdiagnosis—a Review. Biol Trace Elem Res 199, 1762–1770 (2021). https://doi.org/10.1007/s12011-020-02296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02296-4

Keywords

Navigation