Skip to main content

Advertisement

Log in

Selenium Supplementation Protects Against Lipopolysaccharide-Induced Heart Injury via Sting Pathway in Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Sepsis-induced myocardial dysfunctions are associated with high morbidity and mortality. Selenium, an essential trace element, has been reported to exert anti-inflammation, anti-oxidative stress, and anti-apoptosis. However, the protective effects of selenium on LPS-induced heart injury are still poorly illustrated. Therefore, in the present study, we sought to explore the effects of selenium pretreatment on LPS-induced myocardial injury in mice. We firstly found that selenium pretreatment significantly improved markers of myocardial injury and alleviated LPS-induced myocardial dysfunctions. Moreover, selenium supplementation reduced pro-inflammatory cytokines expression, decreased oxidative stress, and inhibited myocardial apoptosis. In addition, selenium supplementation inactivated the Sting pathway. In conclusion, our study suggests that selenium exerts protective effects on LPS-induced myocardial injury, and the underlying molecular mechanism may be related to the inactivation of Sting pathway, implying a potential therapy for sepsis-induced myocardial dysfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315(8):801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheng B, Hoeft AH, Book M, Shu Q, Pastores SM (2015) Sepsis: pathogenesis, biomarkers, and treatment. Biomed Res Int 2015:846935–846932. https://doi.org/10.1155/2015/846935

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gao S, Li H, Xie H, Wu S, Yuan Y, Chu L, Sun S, Yang H, Wu L, Bai Y, Zhou Q, Wang X, Zhan B, Cui H, Yang X (2020) Therapeutic efficacy of Schistosoma japonicum cystatin on sepsis-induced cardiomyopathy in a mouse model. Parasit Vectors 13(1):260. https://doi.org/10.1186/s13071-020-04104-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cai ZL, Shen B, Yuan Y, Liu C, Xie QW, Hu TT, Yao Q, Wu QQ, Tang QZ (2020) The effect of HMGA1 in LPS-induced myocardial inflammation. Int J Biol Sci 16(11):1798–1810. https://doi.org/10.7150/ijbs.39947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tan Y, Wan HH, Sun MM, Zhang WJ, Dong M, Ge W, Ren J, Peng H (2020) Cardamonin protects against lipopolysaccharide-induced myocardial contractile dysfunction in mice through Nrf2-regulated mechanism. Acta Pharmacol Sin. https://doi.org/10.1038/s41401-020-0397-3

  6. Wang C, Yuan W, Hu A, Lin J, Xia Z, Yang CF, Li Y, Zhang Z (2020) Dexmedetomidine alleviated sepsisinduced myocardial ferroptosis and septic heart injury. Mol Med Rep 22(1):175–184. https://doi.org/10.3892/mmr.2020.11114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deb P, Dai J, Singh S, Kalyoussef E, Fitzgerald-Bocarsly P (2020) Triggering of the cGAS-STING pathway in human plasmacytoid dendritic cells inhibits TLR9-mediated IFN production. J Immunol 205:223–236. https://doi.org/10.4049/jimmunol.1800933

    Article  CAS  PubMed  Google Scholar 

  8. Abe T, Barber GN (2014) Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1. J Virol 88(10):5328–5341. https://doi.org/10.1128/JVI.00037-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W, Tang Q (2019) STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol 24:101215. https://doi.org/10.1016/j.redox.2019.101215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang W, Hu D, Wu C, Feng Y, Li A, Liu W, Wang Y, Chen K, Tian M, Xiao F, Zhang Q, Shereen MA, Chen W, Pan P, Wan P, Wu K, Wu J (2020) STING promotes NLRP3 localization in ER and facilitates NLRP3 deubiquitination to activate the inflammasome upon HSV-1 infection. PLoS Pathog 16(3):e1008335. https://doi.org/10.1371/journal.ppat.1008335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qiu H, Weng D, Chen T, Shen L, Chen SS, Wei YR, Wu Q, Zhao MM, Li QH, Hu Y, Zhang Y, Zhou Y, Su YL, Zhang F, Lu LQ, Zhou NY, Li SL, Zhang LL, Wang C, Li HP (2017) Stimulator of interferon genes deficiency in acute exacerbation of idiopathic pulmonary fibrosis. Front Immunol 8:1756. https://doi.org/10.3389/fimmu.2017.01756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qiao JT, Cui C, Qing L, Wang LS, He TY, Yan F, Liu FQ, Shen YH, Hou XG, Chen L (2018) Activation of the STING-IRF3 pathway promotes hepatocyte inflammation, apoptosis and induces metabolic disorders in nonalcoholic fatty liver disease. Metabolism 81:13–24. https://doi.org/10.1016/j.metabol.2017.09.010

    Article  CAS  PubMed  Google Scholar 

  13. Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, Burman JL, Li Y, Zhang Z, Narendra DP, Cai H, Borsche M, Klein C, Youle RJ (2018) Parkin and PINK1 mitigate STING-induced inflammation. Nature 561(7722):258–262. https://doi.org/10.1038/s41586-018-0448-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He L, Xiao X, Yang X, Zhang Z, Wu L, Liu Z (2017) STING signaling in tumorigenesis and cancer therapy: a friend or foe? Cancer Lett 402:203–212. https://doi.org/10.1016/j.canlet.2017.05.026

    Article  CAS  PubMed  Google Scholar 

  15. Chung KW, Dhillon P, Huang S, Sheng X, Shrestha R, Qiu C, Kaufman BA, Park J, Pei L, Baur J, Palmer M, Susztak K (2019) Mitochondrial damage and activation of the STING pathway Lead to renal inflammation and fibrosis. Cell Metab 30(4):784–799 e785. https://doi.org/10.1016/j.cmet.2019.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y, Chen W, Wang Y (2020) STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress. Biomed Pharmacother 125:110022. https://doi.org/10.1016/j.biopha.2020.110022

    Article  CAS  PubMed  Google Scholar 

  17. Kaur R, Ghanghas P, Rastogi P, Kaushal N (2019) Protective role of selenium against hemolytic anemia is mediated through redox modulation. Biol Trace Elem Res 189(2):490–500. https://doi.org/10.1007/s12011-018-1483-y

    Article  CAS  PubMed  Google Scholar 

  18. Kutuk SG, Naziroglu M (2019) Selenium diminishes docetaxel-induced cell death, oxidative stress, and inflammation in the laryngotracheal epithelium of the mouse. Biol Trace Elem Res 196:184–194. https://doi.org/10.1007/s12011-019-01914-0

    Article  CAS  PubMed  Google Scholar 

  19. Zhang ZB, Guo YF, Li CY, Qiu CW, Guo MY (2019) Selenium influences mmu-miR-155 to inhibit inflammation in Staphylococcus aureus-induced mastitis in mice. Food Funct 10(10):6543–6555. https://doi.org/10.1039/c9fo01488h

    Article  CAS  PubMed  Google Scholar 

  20. Flores-Mateo G, Navas-Acien A, Pastor-Barriuso R, Guallar E (2006) Selenium and coronary heart disease: a meta-analysis. Am J Clin Nutr 84(4):762–773. https://doi.org/10.1093/ajcn/84.4.762

    Article  CAS  PubMed  Google Scholar 

  21. Hori E, Yoshida S, Fuchigami T, Haratake M, Nakayama M (2018) Cardiac myoglobin participates in the metabolic pathway of selenium in rats. Metallomics 10(4):614–622. https://doi.org/10.1039/c8mt00011e

    Article  CAS  PubMed  Google Scholar 

  22. Aydemir-Koksoy A, Bilginoglu A, Sariahmetoglu M, Schulz R, Turan B (2010) Antioxidant treatment protects diabetic rats from cardiac dysfunction by preserving contractile protein targets of oxidative stress. J Nutr Biochem 21(9):827–833. https://doi.org/10.1016/j.jnutbio.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  23. Liu ZW, Zhu HT, Chen KL, Qiu C, Tang KF, Niu XL (2013) Selenium attenuates high glucose-induced ROS/TLR-4 involved apoptosis of rat cardiomyocyte. Biol Trace Elem Res 156(1–3):262–270. https://doi.org/10.1007/s12011-013-9857-7

    Article  CAS  PubMed  Google Scholar 

  24. Liu J, Wang S, Zhang Q, Li X, Xu S (2020) Selenomethionine alleviates LPS-induced chicken myocardial inflammation by regulating the miR-128-3p-p38 MAPK axis and oxidative stress. Metallomics 12(1):54–64. https://doi.org/10.1039/c9mt00216b

    Article  CAS  PubMed  Google Scholar 

  25. Bi CL, Zhang SJ, Shen YZ, Pauline M, Li H, Tang H (2020) Selenium plays an anti-inflammatory role by regulation NLRP3 Inflammasome in Staphylococcus aureus-infected mouse mammary gland. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02166-z

  26. Li J, Liu P, Li H, Wang Y, Chen Y, Qi R, Li Y (2019) Sevoflurane preconditioning prevents septic myocardial dysfunction in lipopolysaccharide-challenged mice. J Cardiovasc Pharmacol 74(5):462–473. https://doi.org/10.1097/FJC.0000000000000734

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Wang M, Ye J, Liu J, Xu Y, Wang Z, Ye D, Zhao M, Wan J (2020) The anti-inflammatory mediator resolvin E1 protects mice against lipopolysaccharide-induced heart injury. Front Pharmacol 11:203. https://doi.org/10.3389/fphar.2020.00203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ji D, Wu X, Li D, Liu P, Zhang S, Gao D, Gao F, Zhang M, Xiao Y (2020) Protective effects of chondroitin sulphate nano-selenium on a mouse model of Alzheimer’s disease. Int J Biol Macromol 154:233–245. https://doi.org/10.1016/j.ijbiomac.2020.03.079

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Yang W, Sun X, Xie L, Yang Y, Sang M, Jiao R (2019) SS31 ameliorates sepsis-induced heart injury by inhibiting oxidative stress and inflammation. Inflammation 42(6):2170–2180. https://doi.org/10.1007/s10753-019-01081-3

    Article  CAS  PubMed  Google Scholar 

  30. Luiking YC, Poeze M, Deutz NE (2015) Arginine infusion in patients with septic shock increases nitric oxide production without haemodynamic instability. Clin Sci (Lond) 128(1):57–67. https://doi.org/10.1042/CS20140343

    Article  CAS  Google Scholar 

  31. Duan SY, Chen SJ, Liang W, Chen MY, Chen Y, Guo MY (2020) Dietary selenium deficiency facilitated reduced stomatin and phosphatidylserine externalization, increasing erythrocyte osmotic fragility in mice. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02162-3

  32. Bai K, Hong B, He J, Huang W (2020) Antioxidant capacity and hepatoprotective role of chitosan-stabilized selenium nanoparticles in concanavalin A-induced liver injury in mice. Nutrients 12(3). https://doi.org/10.3390/nu12030857

  33. Guo L, Xiao J, Liu H, Liu H (2020) Selenium nanoparticles alleviate hyperlipidemia and vascular injury in ApoE-deficient mice by regulating cholesterol metabolism and reducing oxidative stress. Metallomics 12(2):204–217. https://doi.org/10.1039/c9mt00215d

    Article  CAS  PubMed  Google Scholar 

  34. Qiao L, Dou X, Yan S, Zhang B, Xu C (2020) Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate diquat-induced intestinal barrier dysfunction in C57BL/6 mice through their antioxidant activity. Food Funct 11(4):3020–3031. https://doi.org/10.1039/d0fo00132e

    Article  CAS  PubMed  Google Scholar 

  35. Liu L, Wu C, Chen D, Yu B, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Luo J, Yan H, He J (2020) Selenium-enriched yeast alleviates oxidative stress-induced intestinal mucosa disruption in weaned pigs. Oxidative Med Cell Longev 2020:5490743–5490711. https://doi.org/10.1155/2020/5490743

    Article  CAS  Google Scholar 

  36. Sharma AC (2007) Sepsis-induced myocardial dysfunction. Shock 28(3):265–269. https://doi.org/10.1097/01.shk.0000235090.30550.fb

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, Li Y, Ning N, Wang J, Yan Z, Zhang S, Jiao X, Wang X, Liu H (2018) Decreased autophagy induced by beta1-adrenoceptor autoantibodies contributes to cardiomyocyte apoptosis. Cell Death Dis 9(3):406. https://doi.org/10.1038/s41419-018-0445-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khuwaja G, Al-Bratty M, Alhazmi HA, Khan A, Safhi MM, Ashafaq M, Islam F, Islam F, Taha MM (2020) Pharmacological melioration by selenium on the toxicity of tellurium in neuroendocrine centre (pituitary gland) in male wistar rats: a mechanistic approach. Saudi Pharm J 28(5):630–636. https://doi.org/10.1016/j.jsps.2020.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fang Y, Xu Z, Shi Y, Pei F, Yang W, Ma N, Kimatu BM, Liu K, Qiu W, Hu Q (2017) Protection mechanism of Se-containing protein hydrolysates from e-enriched rice on Pb(2+)-induced apoptosis in PC12 and RAW264.7 cells. Food Chem 219:391–398. https://doi.org/10.1016/j.foodchem.2016.09.131

    Article  CAS  PubMed  Google Scholar 

  40. Hsu CC, Chuang WJ, Chang CH, Tseng YL, Peng HC, Huang TF (2011) Improvements in endotoxemic syndromes using a disintegrin, rhodostomin, through integrin alphavbeta3-dependent pathway. J Thromb Haemost 9(3):593–602. https://doi.org/10.1111/j.1538-7836.2010.04163.x

    Article  CAS  PubMed  Google Scholar 

  41. Sengul E, Gelen V, Yildirim S, Tekin S, Dag Y (2020) The effects of selenium in acrylamide-induced nephrotoxicity in rats: roles of oxidative stress, inflammation, apoptosis, and DNA damage. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02111-0

  42. Zeng X, Liu J, Du X, Zhang J, Pan K, Shan W, Xie Y, Song W, Zhao J (2018) The protective effects of selenium supplementation on ambient PM2.5-induced cardiovascular injury in rats. Environ Sci Pollut Res Int 25(22):22153–22162. https://doi.org/10.1007/s11356-018-2292-8

    Article  CAS  PubMed  Google Scholar 

  43. Hu D, Cui YX, Wu MY, Li L, Su LN, Lian Z, Chen H (2020) Cytosolic DNA sensor cGAS plays an essential pathogenetic role in pressure overload-induced heart failure. Am J Physiol Heart Circ Physiol 318(6):H1525–H1537. https://doi.org/10.1152/ajpheart.00097.2020

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the China National Natural Science Foundation (81900275), the Natural Science Foundation of Shanxi Province (201801D221273), the Scientific and Technological Innovation Program of Shanxi Higher Education Institution (201804026), and the Shanxi Provincial Commission of Health and Family Planning (2017053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yang, B., Cao, HL. et al. Selenium Supplementation Protects Against Lipopolysaccharide-Induced Heart Injury via Sting Pathway in Mice. Biol Trace Elem Res 199, 1885–1892 (2021). https://doi.org/10.1007/s12011-020-02295-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02295-5

Keywords

Navigation