Skip to main content
Log in

Boron Supplementation Promotes Osteogenesis of Tibia by Regulating the Bone Morphogenetic Protein-2 Expression in African Ostrich Chicks

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study aimed to explore the effects of supplemental boron on osteogenesis of tibia and to investigate the possible relationship between additional boron and the expression of bone morphogenetic protein-2 (BMP-2) in tibia of ostrich chicks. Therefore, forty-eight African ostrich chicks (15 days old) were supplemented with 0 mg/L, 40 mg/L, 80 mg/L, 160 mg/L, 320 mg/L, and 640 mg/L of boron in drinking water for 75 days. The paraffin sections of tibia used to measure histomorphometric parameters by hematoxylin and eosin (HE) staining, Masson’s staining, and immunohistochemistry (IHC). Enzyme-linked immunosorbent assay was performed to assess the level of BMP-2, osteocalcin (BGP), glucocorticoids (GCs), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL) in serum. TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) technique was performed to detect the cell apoptosis. The results indicated that low dose of supplemental boron (40 mg/L–160 mg/L) in drinking water promotes bone development by increasing the mature ossein. The expression of BMP2 on 45 days was higher than 90 days. Serum level of BMP-2, BGP, and GCs changed significantly in groups with low dosage of boron, and OPG/RANKL ratio was upregulated from 0 to 160 mg/L. Cell apoptosis was least in 40 mg/L and 160 mg/L groups. Taken together, low dose of boron supplemented in drinking water could promote osteogenesis and growth and development of tibia by regulating the expression and secretion of BMP-2 and providing a dynamically balanced environment for tibia growth, development, and reconstruction by regulating the concentrations of BGP, GCs, and OPG/RANKL ratio in serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cooper RG, Mahrose KMA, Horbańczuk JO, Villegas-Vizcaíno R, Kennou Sebei S, Faki Mohammed AE (2009) The wild ostrich (Struthio camelus): a review. Trop Anim Health Prod 41(8):1669–1678. https://doi.org/10.1007/s11250-009-9364-1

    Article  CAS  PubMed  Google Scholar 

  2. Abbas G, Zahid O, Khan M et al (2018) Future of ostrich farming in Pakistan. Adv Zool Botany 6(2):55–65

    Article  Google Scholar 

  3. Chadwick KP, Regnault S, Allen V, Hutchinson JR (2014) Three-dimensional anatomy of the ostrich (Struthio camelus) knee joint. PeerJ 2:e706

    Article  Google Scholar 

  4. Hutchinson JR, Rankin JW, Rubenson J, Rosenbluth KH, Siston RA, Delp SL (2015) Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion. PeerJ 3:e1001

    Article  Google Scholar 

  5. Birn-Jeffery AV, Hubicki CM, Blum Y, Renjewski D, Hurst JW, Daley MA (2014) Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain. J Exp Biol 217(21):3786–3796. https://doi.org/10.1242/jeb.102640

    Article  PubMed  PubMed Central  Google Scholar 

  6. Selvan S, Kumarasamy P, Thyagarajan D (2012) Growth performance of ostriches (Struthio camelus) in India. Indian J Anim Res 46(2):176–179

    Google Scholar 

  7. Abourachid A, Renous S (2000) Bipedal locomotion in ratites (Paleognatiform): examples of cursorial birds. Ibis 142(4):538–549

    Article  Google Scholar 

  8. Charuta A, Dzierzecka M, Pierzchala M et al (2013) Sex-related differences of morphometric, densitometric, and geometric parameters of tibia and tarsometatarsal bone in 14-month-old ostriches (Struthio camelus). Poult Sci 92(11):2965–2976. https://doi.org/10.3382/ps.2013-03076

    Article  CAS  PubMed  Google Scholar 

  9. Aslan L, Genccelep M, Karasu A et al (2009) Extremity problems in ostrich chicks and their treatment. J Anim Vet Adv 8(5):903–906

    Article  Google Scholar 

  10. Cheng J, Peng K, Jin E, Zhang Y, Liu Y, Zhang N, Song H, Liu H, Tang Z (2011) Effect of additional boron on tibias of African ostrich chicks. Biol Trace Elem Res 144(1–3):538–549

    Article  CAS  Google Scholar 

  11. Uluisik I, Karakaya HC, Koc A (2018) The importance of boron in biological systems. J Trace Elem Med Biol 45:156–162

    Article  CAS  Google Scholar 

  12. Nielsen FH (2014) Should bioactive trace elements not recognized as essential, but with beneficial health effects, have intake recommendations. J Trace Elem Med Biol 28(4):406–408

    Article  CAS  Google Scholar 

  13. Hakki SS, Bozkurt BS, Hakki EE (2010) Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J Trace Elem Med Biol 24(4):243–250. https://doi.org/10.1016/j.jtemb.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  14. Tang J, Zheng X-t, Xiao K et al (2016) Effect of boric acid supplementation on the expression of BDNF in African ostrich chick brain. Biol Trace Elem Res 170(1):208–215. https://doi.org/10.1007/s12011-015-0428-y

    Article  CAS  PubMed  Google Scholar 

  15. Hu Q, Li S, Qiao E, Tang Z, Jin E, Jin G, Gu Y (2014) Effects of boron on structure and antioxidative activities of spleen in rats. Biol Trace Elem Res 158(1):73–80

    Article  CAS  Google Scholar 

  16. Scorei RI, Popa R (2010) Boron-containing compounds as preventive and chemotherapeutic agents for cancer. Anti Cancer Agents Med Chem 10(4):346–351

    Article  CAS  Google Scholar 

  17. Ying X, Cheng S, Wang W, Lin Z, Chen Q, Zhang W, Kou D, Shen Y, Cheng X, Rompis FA, Peng L, zhu Lu C (2011) Effect of boron on osteogenic differentiation of human bone marrow stromal cells. Biol Trace Elem Res 144(1–3):306–315

    Article  CAS  Google Scholar 

  18. McCarty KF, Mills MJ, Medlin DL, Friedmann TA (1994) Comment on "growth and characterization of epitaxial cubic boron nitride films on silicon". Phys Rev B Condens Matter 50(12):8907–8910. https://doi.org/10.1103/physrevb.50.8907

    Article  CAS  PubMed  Google Scholar 

  19. Hunt CD (1989) Dietary boron modified the effects of magnesium and molybdenum on mineral metabolism in the cholecalciferol-deficient chick. Biol Trace Elem Res 22(2):201–220. https://doi.org/10.1007/BF02916650

    Article  CAS  PubMed  Google Scholar 

  20. Hunt CD, Herbel JL, Idso JP (1994) Dietary boron modifies the effects of vitamin D3 nutrition on indices of energy substrate utilization and mineral metabolism in the chick. J Bone Miner Res 9(2):171–182. https://doi.org/10.1002/jbmr.5650090206

    Article  CAS  PubMed  Google Scholar 

  21. Maridas DE, Feigenson M, Renthal NE et al (2020) Bone morphogenetic proteins, in principles of bone biology. Elsevier, pp 1189–1197

  22. Lim J, Tu X, Choi K, Akiyama H, Mishina Y, Long F (2015) BMP–Smad4 signaling is required for precartilaginous mesenchymal condensation independent of Sox9 in the mouse. Dev Biol 400(1):132–138

    Article  CAS  Google Scholar 

  23. Katagiri T, Watabe T (2016) Bone morphogenetic proteins. Cold Spring Harb Perspect Biol 8(6):a021899

    Article  Google Scholar 

  24. Li J-F, Lin Z-Y, Zheng Q-X, Guo XD, Yang SH, Lu HW, Lan SH (2010) Bone formation in ectopic and osteogenic tissue induced by a novel BMP-2-related peptide combined with rat tail collagen. Biotechnol Bioproc E 15(5):725–732

    Article  CAS  Google Scholar 

  25. Bilezikian JP, Raisz LG, Martin TJ (2008) Principles of bone biology. Elsevier, London

    Google Scholar 

  26. Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ (2006) Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2(12):e216. https://doi.org/10.1371/journal.pgen.0020216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsuji K, Cox K, Gamer L, Graf D, Economides A, Rosen V (2010) Conditional deletion of BMP7 from the limb skeleton does not affect bone formation or fracture repair. J Orthop Res 28(3):384–389. https://doi.org/10.1002/jor.20996

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kokabu S, Gamer L, Cox K, Lowery J, Tsuji K, Raz R, Economides A, Katagiri T, Rosen V (2012) BMP3 suppresses osteoblast differentiation of bone marrow stromal cells via interaction with Acvr2b. Mol Endocrinol 26(1):87–94. https://doi.org/10.1210/me.2011-1168

    Article  CAS  PubMed  Google Scholar 

  29. Huang Z, Ren PG, Ma T, Smith RL, Goodman SB (2010) Modulating osteogenesis of mesenchymal stem cells by modifying growth factor availability. Cytokine 51(3):305–310. https://doi.org/10.1016/j.cyto.2010.06.002

    Article  CAS  PubMed  Google Scholar 

  30. Noel D, Gazit D, Bouquet C et al (2004) Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells 22(1):74–85. https://doi.org/10.1634/stemcells.22-1-74

    Article  CAS  PubMed  Google Scholar 

  31. Sato C, Iwasaki T, Kitano S, Tsunemi S, Sano H (2012) Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation. Biochem Biophys Res Commun 423(1):200–205. https://doi.org/10.1016/j.bbrc.2012.05.130

    Article  CAS  PubMed  Google Scholar 

  32. Shu B, Zhang M, Xie R, Wang M, Jin H, Hou W, Tang D, Harris SE, Mishina Y, O'Keefe RJ, Hilton MJ, Wang Y, Chen D (2011) BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J Cell Sci 124(Pt 20):3428–3440. https://doi.org/10.1242/jcs.083659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9(22):2808–2820. https://doi.org/10.1101/gad.9.22.2808

    Article  CAS  PubMed  Google Scholar 

  34. Wang W, Xiao K, Zheng X, Zhu D, Yang Z, Tang J, Sun P, Wang J, Peng K (2014) Effects of supplemental boron on growth performance and meat quality in African ostrich chicks. J Agric Food Chem 62(46):11024–11029. https://doi.org/10.1021/jf501789t

    Article  CAS  PubMed  Google Scholar 

  35. Haseeb K, Wang J, Xiao K, Yang KL, Sun PP, Wu XT, Luo Y, Song H, Liu HZ, Zhong JM, Peng KM (2018) Effects of boron supplementation on expression of Hsp70 in the spleen of African ostrich. Biol Trace Elem Res 182(2):317–327. https://doi.org/10.1007/s12011-017-1087-y

    Article  CAS  PubMed  Google Scholar 

  36. Liang C, Yang Y (1996) Ostrich-raising management and disease control. Beijing Agricultural University Press, Beijing

    Google Scholar 

  37. Mahrose KM, El-Hack ME, Amer SA (2019) Influences of dietary crude protein and stocking density on growth performance and body measurements of ostrich chicks. An Acad Bras Cienc 91(1):e20180479

    Article  Google Scholar 

  38. Elhashmi Y, Arabi O, Taha T, Eidam O (2011) Growth and development of muscles, bones and fat of red-necked ostrich (Struthio camelus camelus). Online J Anim Feed Res 1:417–422

    Google Scholar 

  39. Kabu M, Akosman MS (2013) Biological effects of boron. Rev Environ Contam Toxicol 225:57–75

    PubMed  Google Scholar 

  40. Scherf H, Wahl J, Hublin J-J, Harvati K (2016) Patterns of activity adaptation in humeral trabecular bone in Neolithic humans and present-day people. Am J Phys Anthropol 159(1):106–115. https://doi.org/10.1002/ajpa.22835

    Article  PubMed  Google Scholar 

  41. Lin Y, Tang W, Wu L, Jing W, Li X, Wu Y, Liu L, Long J, Tian W (2008) Bone regeneration by BMP-2 enhanced adipose stem cells loading on alginate gel. Histochem Cell Biol 129(2):203–210

    Article  CAS  Google Scholar 

  42. Mumcuoglu Guvenc D, Fahmy-Garcia S, Ridwan Y et al (2018) Injectable BMP-2 delivery system based on collagen-derived microspheres and alginate induced bone formation in a time-and dose-dependent manner. Eur Cell Mater 35:242–254

    Article  Google Scholar 

  43. Behr B, Sorkin M, Lehnhardt M, Renda A, Longaker MT, Quarto N (2012) A comparative analysis of the osteogenic effects of BMP-2, FGF-2, and VEGFA in a calvarial defect model. Tissue Eng A 18(9–10):1079–1086

    Article  CAS  Google Scholar 

  44. Zhang W, Zhu C, Wu Y et al (2014) VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. Eur Cell Mater 27(12):1–11

    PubMed  Google Scholar 

  45. Chai S, Wan L, Wang J-L, Huang J-C, Huang H-X (2019) Gushukang inhibits osteocyte apoptosis and enhances BMP-2/Smads signaling pathway in ovariectomized rats. Phytomedicine 64:153063

    Article  CAS  Google Scholar 

  46. Garimella R, Tague SE, Zhang J, Belibi F, Nahar N, Sun BH, Insogna K, Wang J, Anderson HC (2008) Expression and synthesis of bone morphogenetic proteins by osteoclasts: a possible path to anabolic bone remodeling. J Histochem Cytochem 56(6):569–577. https://doi.org/10.1369/jhc.2008.950394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu M, Chen G, Li YP (2016) TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009. https://doi.org/10.1038/boneres.2016.9

    Article  PubMed  PubMed Central  Google Scholar 

  48. Patti A, Gennari L, Merlotti D, Dotta F, Nuti R (2013) Endocrine actions of osteocalcin. Int J Endocrinol 2013:846480

    Article  Google Scholar 

  49. Huang C-C, Lee C-C, Wang C-J et al (2014) Effect of age-related cartilage turnover on serum C-telopeptide of collagen type II and osteocalcin levels in growing rabbits with and without surgically induced osteoarthritis. Biomed Res Int 2014:284784

    PubMed  PubMed Central  Google Scholar 

  50. An J, Yang H, Zhang Q, Liu C, Zhao J, Zhang L, Chen B (2016) Natural products for treatment of osteoporosis: the effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci 147:46–58. https://doi.org/10.1016/j.lfs.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  51. Li Y, Li K (2014) Osteocalcin induces growth hormone/insulin-like growth factor-1 system by promoting testosterone synthesis in male mice. Horm Metab Res 46(11):768–773. https://doi.org/10.1055/s-0034-1371869

    Article  CAS  PubMed  Google Scholar 

  52. Wang L, Heckmann BL, Yang X, Long H (2019) Osteoblast autophagy in glucocorticoid-induced osteoporosis. J Cell Physiol 234(4):3207–3215. https://doi.org/10.1002/jcp.27335

    Article  CAS  PubMed  Google Scholar 

  53. Kini U, Nandeesh B (2012) Physiology of bone formation, remodeling, and metabolism. In: Radionuclide and hybrid bone imaging. Springer, pp 29–57

  54. Chen F, Zhang L, OuYang Y, Guan H, Liu Q, Ni B (2014) Glucocorticoid induced osteoblast apoptosis by increasing E4BP4 expression via up-regulation of Bim. Calcif Tissue Int 94(6):640–647

    Article  CAS  Google Scholar 

  55. Zanotti S, Yu J, Adhikari S, Canalis E (2018) Glucocorticoids inhibit notch target gene expression in osteoblasts. J Cell Biochem 119(7):6016–6023

    Article  CAS  Google Scholar 

  56. Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D (2004) The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth F R 15(6):457–475. https://doi.org/10.1016/j.cytogfr.2004.06.004

    Article  CAS  Google Scholar 

  57. Liu R, Jin C, Wang Z, Wang Z, Wang J, Wang L (2015) Effects of manganese deficiency on the microstructure of proximal tibia and OPG/RANKL gene expression in chicks. Vet Res Commun 39(1):31–37. https://doi.org/10.1007/s11259-015-9626-5

    Article  PubMed  Google Scholar 

  58. Chen C, Zheng H, Qi S (2019) Genistein and silicon synergistically protects against ovariectomy-induced bone loss through upregulating OPG/RANKL ratio. Biol Trace Elem Res 188(2):441–450. https://doi.org/10.1007/s12011-018-1433-8

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Y, Chang Y, Yang T, Wen M, Zhang Z, Liu G, Zhao H, Chen X, Tian G, Cai J, Wu B, Jia G (2019) The hepatoprotective effects of zinc glycine on liver injury in meat duck through alleviating hepatic lipid deposition and inflammation. Biol Trace Elem Res 195:1–10. https://doi.org/10.1007/s12011-019-01860-x

    Article  CAS  Google Scholar 

  60. Demirci K, Nazıroğlu M, Övey İS, Balaban H (2017) Selenium attenuates apoptosis, inflammation and oxidative stress in the blood and brain of aged rats with scopolamine-induced dementia. Metab Brain Dis 32(2):321–329

    Article  CAS  Google Scholar 

  61. Shi L, Cao H, Luo J, Liu P, Wang T, Hu G, Zhang C (2017) Effects of molybdenum and cadmium on the oxidative damage and kidney apoptosis in duck. Ecotoxicol Environ Saf 145:24–31

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China No. 31672504 and 31272517.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, formal analysis, methodology, and writing (original draft): Daiyun Zhu

Writing and editing: Abdur Rahman Ansari

Conceptualization, performing experiments, formal analysis, and methodology: Xiao Ke, Wei Wang, and Lei Wang

Reviewing and editing: Weiwei Qiu and Xinting Zheng

Methodology and reviewing: Hui Song and Huazhen Liu

Conceptualization: Juming Zhong

Conceptualization, funding acquisition, methodology, writing, and editing: Kemei Peng

The authors alone are responsible for the content and writing of this article.

Corresponding author

Correspondence to Kemei Peng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Ansari, A.R., Xiao, K. et al. Boron Supplementation Promotes Osteogenesis of Tibia by Regulating the Bone Morphogenetic Protein-2 Expression in African Ostrich Chicks. Biol Trace Elem Res 199, 1544–1555 (2021). https://doi.org/10.1007/s12011-020-02258-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02258-w

Keywords

Navigation