Skip to main content

Advertisement

Log in

Mineral and Fatty Acid Content Variation in White Oat Genotypes Grown in Brazil

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A healthy diet is directly associated with a nutrient-rich and toxic contaminant poor intake. A diet poor in diversity can lead to micronutrient deficiency. The intake of functional foods can provide benefits in the prevention and treatment of diseases. Oats are a functional food; are a source of soluble fiber, lipids, proteins, vitamins, minerals, and polyphenols; and are low in carbohydrate content. Thus, in this study, we characterize mineral accumulation, fatty acid composition, and the absence of contaminants in oat genotypes to evaluate the potential of this cereal as food to minimize the effects of micronutrient deficiency. Most of the oat genotypes showed higher mineral levels than other cereals such as wheat, rice, and maize. FAEM 5 Chiarasul, Barbarasul, UPFA Ouro, URS Altiva, URS Brava, and URS Taura showed higher iron concentration while URS Brava showed the highest zinc concentration. The oat genotypes did not show significant arsenic, strontium, and cadmium accumulation. Considering the accumulation of trace elements in the grain, little genetic diversity among the analyzed oat accessions was detected, dividing into two groups. Regarding fatty acid composition, IPR Afrodite, FAEM 4 Carlasul, FAEM 5 Chiarasul, URS Taura, Barbarasul, and URS 21 showed higher essential fatty acid concentrations. These genotypes can be used in crosses with URS Brava, which displayed a higher Fe and Zn accumulation and is genetically distant from the other cultivars. Oat is a functional food showing ability for the accumulation of minerals and also essential fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kushwaha SK, Grimberg Å, Carlsson AS, Hofvander P (2019) Charting oat (Avena sativa) embryo and endosperm transcription factor expression reveals differential expression of potential importance for seed development. Mol Gen Genomics 294:1183–1197. https://doi.org/10.1007/s00438-019-01571-x

    Article  CAS  Google Scholar 

  2. CONAB (2019) Acompanhamento da Safra Brasileira. Cia Nac Abast 7:1–109

  3. Zwer P (2017) Oats: grain-quality characteristics and management of quality requirements. In: Cereal grains, Second Edi. Elsevier, pp 235–256

  4. Shivay YS, Prasad R, Pal M (2013) Zinc fortification of oat grains through zinc fertilisation. Agric Res 2:375–381. https://doi.org/10.1007/s40003-013-0078-2

    Article  CAS  Google Scholar 

  5. Sterna V, Zute S, Brunava L (2016) Oat grain composition and its nutrition benefice. Agric Agric Sci Procedia 8:252–256. https://doi.org/10.1016/j.aaspro.2016.02.100

    Article  Google Scholar 

  6. Bityutskii N, Yakkonen K, Loskutov I (2017) Content of iron, zinc and manganese in grains of Triticum aestivum, Secale cereale, Hordeum vulgare and Avena sativa cultivars registered in Russia. Genet Resour Crop Evol 64:1955–1961. https://doi.org/10.1007/s10722-016-0486-9

    Article  CAS  Google Scholar 

  7. de Valença AW, Bake A, Brouwer ID, Giller KE (2017) Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob Food Sec 12:8–14. https://doi.org/10.1016/j.gfs.2016.12.001

    Article  Google Scholar 

  8. Rawat N, Neelam K, Tiwari VK, Dhaliwal HS (2013) Biofortification of cereals to overcome hidden hunger. Plant Breed 132:n/a-n/a. https://doi.org/10.1111/pbr.12040

  9. Neeraja CN, Ravindra Babu V, Ram S, Hossain F, Hariprasanna K, Rajpurohit BS, Prabhakar, Longvah T, Prasad KS, Sandhu JS, Datta SK (2017) Biofortification in cereals: progress and prospects. Curr Sci 113:1050. https://doi.org/10.18520/cs/v113/i06/1050-1057

    Article  Google Scholar 

  10. Garg M, Sharma N, Sharma S, et al (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr 5:. https://doi.org/10.3389/fnut.2018.00012

  11. Alabdulkarim B, Bakeet ZAN, Arzoo S (2012) Role of some functional lipids in preventing diseases and promoting health. J King Saud Univ Sci 24:319–329. https://doi.org/10.1016/j.jksus.2012.03.001

    Article  Google Scholar 

  12. Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58. https://doi.org/10.1016/j.gfs.2017.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lângaro NC, Carvalho IQ de (2014) INDICAÇÕES TÉCNICAS PARA A CULTURA DA AVEIA. UPF Editora, Passo Fundo

  14. Paniz FP, Pedron T, Freire BM, Torres DP, Silva FF, Batista BL (2018) Effective procedures for the determination of As, Cd, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Se, Th, Zn, U and rare earth elements in plants and foodstuffs. Anal Methods 10:4094–4103. https://doi.org/10.1039/C8AY01295D

    Article  CAS  Google Scholar 

  15. Inmetro (2016) Instituto Nacional de Metrologia Qualidade e Tecnologia. In: DOQ-CGCRE-008 Orientação sobre validação de métodos analíticos. http://www.inmetro.gov.br/Sidoq/Arquivos/CGCRE/DOQ/DOQ-CGCRE-8_05.pdf

  16. Pereira RM, Crizel MG, La Rosa ND et al (2019) Multitechnique determination of metals and non-metals in sports supplements after microwave-assisted digestion using diluted acid. Microchem J 145:235–241. https://doi.org/10.1016/j.microc.2018.10.043

    Article  CAS  Google Scholar 

  17. Brasil (2010) Farmacopeia Brasileira. Farm Bras 5a edição 2:546

  18. Hartman L, Lago RC (1973) Rapid preparation of fatty acid methyl esters from lipids. Lab Pract 22:475–476 passim

    CAS  PubMed  Google Scholar 

  19. Mojena R (1977) Hierarchical grouping methods and stopping rules: an evaluation. Comput J 20:359–363. https://doi.org/10.1093/comjnl/20.4.359

    Article  Google Scholar 

  20. Cruz CD (2013) GENES - a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron 35:271–276. https://doi.org/10.4025/actasciagron.v35i3.21251

    Article  Google Scholar 

  21. Demsar J, Curk T, Erjavec A et al (2013) Orange: data mining toolbox in python. J Mach Learn Res 14:2349–2353

    Google Scholar 

  22. Biesalski HK, Tinz J (2018) Micronutrients in the life cycle: requirements and sufficient supply. NFS J 11:1–11. https://doi.org/10.1016/j.nfs.2018.03.001

    Article  Google Scholar 

  23. Prashanth L, Kattapagari KK, Chitturi RT et al (2015) A review on role of essential trace elements in health and disease. J NTR Univ Health Sci 4:75. https://doi.org/10.4103/2277-8632.158577

    Article  Google Scholar 

  24. Bhattacharya PT, Misra SR, Hussain M (2016) Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Scientifica (Cairo) 2016:1–12. https://doi.org/10.1155/2016/5464373

    Article  CAS  Google Scholar 

  25. Prasad R, Shivay YS, Kumar D (2013) Zinc fertilization of cereals for increased production and alleviation of zinc malnutrition in India. Agric Res 2:111–118. https://doi.org/10.1007/s40003-013-0064-8

    Article  CAS  Google Scholar 

  26. Jākobsone I, Kantāne I, Zute S, Jansone I, Bartkevičs V (2015) Macro-elements and trace elements in cereal grains cultivated in Latvia. Proc Latv Acad Sci Sect B Nat Exact Appl Sci 69:152–157. https://doi.org/10.1515/prolas-2015-0022

    Article  CAS  Google Scholar 

  27. Rodehutscord M, Rückert C, Maurer HP, Schenkel H, Schipprack W, Bach Knudsen KE, Schollenberger M, Laux M, Eklund M, Siegert W, Mosenthin R (2016) Variation in chemical composition and physical characteristics of cereal grains from different genotypes. Arch Anim Nutr 70:87–107. https://doi.org/10.1080/1745039X.2015.1133111

    Article  CAS  PubMed  Google Scholar 

  28. Cakmak I, Kutman UB (2018) Agronomic biofortification of cereals with zinc: a review. Eur J Soil Sci 69:172–180. https://doi.org/10.1111/ejss.12437

    Article  Google Scholar 

  29. Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP (2014) Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci 59:365–372. https://doi.org/10.1016/j.jcs.2013.09.001

    Article  CAS  Google Scholar 

  30. Velu G, Crespo Herrera L, Guzman C, Huerta J, Payne T, Singh RP (2019) Assessing genetic diversity to breed competitive biofortified wheat with enhanced grain Zn and Fe concentrations. Front Plant Sci 9:1–11. https://doi.org/10.3389/fpls.2018.01971

    Article  Google Scholar 

  31. Maqbool MA, Beshir A (2019) Zinc biofortification of maize (Zea mays L.): status and challenges. Plant Breed 138:1–28. https://doi.org/10.1111/pbr.12658

    Article  CAS  Google Scholar 

  32. Nakandalage N, Nicolas M, Norton RM, Hirotsu N, Milham PJ, Seneweera S (2016) Improving rice zinc biofortification success rates through genetic and crop management approaches in a changing environment. Front Plant Sci 7:1–13. https://doi.org/10.3389/fpls.2016.00764

    Article  Google Scholar 

  33. Palanog AD, Calayugan MIC, Descalsota-Empleo GI, Amparado A, Inabangan-Asilo MA, Arocena EC, Sta. Cruz PC, Borromeo TH, Lalusin A, Hernandez JE, Acuin C, Reinke R, Swamy BPM (2019) Zinc and iron nutrition status in the Philippines population and local soils. Front Nutr 6. https://doi.org/10.3389/fnut.2019.00081

  34. Connorton JM, Balk J (2019) Iron biofortification of staple crops: lessons and challenges in plant genetics. Plant Cell Physiol 60:1447–1456. https://doi.org/10.1093/pcp/pcz079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Škrbić BD, Ji Y, Živančev JR, Jovanović GG, Jie Z (2017) Mycotoxins, trace elements, and phthalates in marketed rice of different origin and exposure assessment. Food Addit Contam Part B 10:1–12. https://doi.org/10.1080/19393210.2017.1342701

    Article  CAS  Google Scholar 

  36. Tang J, Zou C, He Z, Shi R, Ortiz-Monasterio I, Qu Y, Zhang Y (2008) Mineral element distributions in milling fractions of Chinese wheats. J Cereal Sci 48:821–828. https://doi.org/10.1016/j.jcs.2008.06.008

    Article  CAS  Google Scholar 

  37. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84. https://doi.org/10.1111/j.1469-8137.2008.02738.x

    Article  CAS  PubMed  Google Scholar 

  38. Goudia BD, Hash CT (2015) Breeding for high grain Fe and Zn levels in cereals. Int J Innov Appl Stud 12:2028–9324

    Google Scholar 

  39. Ross AC, Caballero BH, Cousins RJ, et al (2012) Modern nutrition in health and disease. Elev Ed 1616

  40. Liu C, Chen G, Li Y, Peng Y, Zhang A, Hong K, Jiang H, Ruan B, Zhang B, Yang S, Gao Z, Qian Q (2017) Characterization of a major QTL for manganese accumulation in rice grain. Sci Rep 7:17704. https://doi.org/10.1038/s41598-017-18090-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qiao K, Wang F, Liang S, Wang H, Hu Z, Chai T (2019) New biofortification tool: wheat TaCNR5 enhances zinc and manganese tolerance and increases zinc and manganese accumulation in rice grains. J Agric Food Chem 67:9877–9884. https://doi.org/10.1021/acs.jafc.9b04210

    Article  CAS  PubMed  Google Scholar 

  42. Bashir K, Takahashi R, Nakanishi H, Nishizawa NK (2013) The road to micronutrient biofortification of rice: progress and prospects. Front Plant Sci 4:1–7. https://doi.org/10.3389/fpls.2013.00015

    Article  CAS  Google Scholar 

  43. Masuda H, Suzuki M, Morikawa KC, Kobayashi T, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK (2008) Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1:100–108. https://doi.org/10.1007/s12284-008-9007-6

    Article  Google Scholar 

  44. Kirchmann H, Mattsson L, Eriksson J (2009) Trace element concentration in wheat grain: results from the Swedish long-term soil fertility experiments and national monitoring program. Environ Geochem Health 31:561–571. https://doi.org/10.1007/s10653-009-9251-8

    Article  CAS  PubMed  Google Scholar 

  45. Thomson CD (2004) Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 58:391–402. https://doi.org/10.1038/sj.ejcn.1601800

    Article  CAS  PubMed  Google Scholar 

  46. Lyons G (2018) Biofortification of cereals with foliar selenium and iodine could reduce hypothyroidism. Front Plant Sci 9:1–8. https://doi.org/10.3389/fpls.2018.00730

    Article  CAS  Google Scholar 

  47. Chen L, Yang F, Xu J, Hu Y, Hu Q, Zhang Y, Pan G (2002) Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. J Agric Food Chem 50:5128–5130. https://doi.org/10.1021/jf0201374

    Article  CAS  PubMed  Google Scholar 

  48. Shen J, Jiang C, Yan Y, Zu C (2019) Selenium distribution and translocation in rice (Oryza sativa L.) under different naturally seleniferous soils. Sustainability 11:520. https://doi.org/10.3390/su11020520

    Article  CAS  Google Scholar 

  49. Lyons G, Ortiz-Monasterio I, Stangoulis J, Graham R (2005) Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding? Plant Soil 269:369–380. https://doi.org/10.1007/s11104-004-0909-9

    Article  CAS  Google Scholar 

  50. Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF, Margaritis I (2016) Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol 35:107–115. https://doi.org/10.1016/j.jtemb.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  51. Leyssens L, Vinck B, Van Der Straeten C et al (2017) Cobalt toxicity in humans—a review of the potential sources and systemic health effects. Toxicology 387:43–56. https://doi.org/10.1016/j.tox.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  52. Czarnek K, Terpiłowska S, Siwicki AK (2015) Selected aspects of the action of cobalt ions in the human body. Cent Eur J Immunol 2:236–242. https://doi.org/10.5114/ceji.2015.52837

  53. Watanabe F, Bito T (2018) Vitamin B12 sources and microbial interaction. Exp Biol Med 243:148–158. https://doi.org/10.1177/1535370217746612

    Article  CAS  Google Scholar 

  54. Tvermoes BE, Unice KM, Paustenbach DJ, Finley BL, Otani JM, Galbraith DA (2014) Effects and blood concentrations of cobalt after ingestion of 1 mg/d by human volunteers for 90 d. Am J Clin Nutr 99:632–646. https://doi.org/10.3945/ajcn.113.071449

    Article  CAS  PubMed  Google Scholar 

  55. Thielecke F, Nugent A (2018) Contaminants in grain—a major risk for whole grain safety? Nutrients 10:1213. https://doi.org/10.3390/nu10091213

    Article  CAS  PubMed Central  Google Scholar 

  56. Kumarathilaka P, Seneweera S, Ok YS, Meharg A, Bundschuh J (2019) Arsenic in cooked rice foods: assessing health risks and mitigation options. Environ Int 127:584–591. https://doi.org/10.1016/j.envint.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  57. Mondal D, Mwale T, Xu L, Matthews H, Oyeka A, Lace-Costigan G, Polya DA (2019) Risk perception of arsenic exposure from rice intake in a UK population. Palgrave Commun 5:89. https://doi.org/10.1057/s41599-019-0297-7

    Article  Google Scholar 

  58. Nachman KE, Ginsberg GL, Miller MD, Murray CJ, Nigra AE, Pendergrast CB (2017) Mitigating dietary arsenic exposure: current status in the United States and recommendations for an improved path forward. Sci Total Environ 581–582:221–236. https://doi.org/10.1016/j.scitotenv.2016.12.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guillod-Magnin R, Brüschweiler BJ, Aubert R, Haldimann M (2018) Arsenic species in rice and rice-based products consumed by toddlers in Switzerland. Food Addit Contam Part A 35:1164–1178. https://doi.org/10.1080/19440049.2018.1440641

    Article  CAS  Google Scholar 

  60. Filippini T, Tancredi S, Malagoli C et al (2019) Dietary estimated intake of trace elements: risk assessment in an Italian population. Expo Health. https://doi.org/10.1007/s12403-019-00324-w

  61. WHO (2010) Strontium and strontium compounds. World Health Organization, Geneva PP - Geneva

  62. Millour S, Noël L, Chekri R, Vastel C, Kadar A, Sirot V, Leblanc JC, Guérin T (2012) Strontium, silver, tin, iron, tellurium, gallium, germanium, barium and vanadium levels in foodstuffs from the second French Total diet study. J Food Compos Anal 25:108–129. https://doi.org/10.1016/j.jfca.2011.10.004

    Article  CAS  Google Scholar 

  63. Kim K, Melough M, Vance T, Noh H, Koo S, Chun O (2019) Dietary cadmium intake and sources in the US. Nutrients 11:2. https://doi.org/10.3390/nu11010002

    Article  Google Scholar 

  64. Škrbić B, Živančev J, Mrmoš N (2013) Concentrations of arsenic, cadmium and lead in selected foodstuffs from Serbian market basket: estimated intake by the population from the Serbia. Food Chem Toxicol 58:440–448. https://doi.org/10.1016/j.fct.2013.05.026

    Article  CAS  PubMed  Google Scholar 

  65. Satarug S, Vesey DA, Gobe GC (2017) Health risk assessment of dietary cadmium intake: do current guidelines indicate how much is safe? Environ Health Perspect 125:284–288. https://doi.org/10.1289/EHP108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang N, Qiu W, Dai J, Guo X, Lu Q, Wang T, Li S, Liu T, Zuo Y (2019) AhNRAMP1 enhances manganese and zinc uptake in plants. Front Plant Sci 10:1–13. https://doi.org/10.3389/fpls.2019.00415

    Article  Google Scholar 

  67. Wang M, Yang Y, Chen W (2018) Manganese, zinc, and pH affect cadmium accumulation in Rice grain under field conditions in southern China. J Environ Qual 47:306–311. https://doi.org/10.2134/jeq2017.06.0237

    Article  CAS  PubMed  Google Scholar 

  68. Barbosa Neto JF, Matiello RR, De Carvalho FIF et al (2000) Progresso genético no melhoramento da aveia-branca no Sul do Brasil. Pesq Agrop Brasileira 35:1605–1612. https://doi.org/10.1590/S0100-204X2000000800013

    Article  Google Scholar 

  69. Fahy E, Cotter D, Sud M, Subramaniam S (2011) Lipid classification, structures and tools. Biochim Biophys Acta Mol Cell Biol Lipids 1811:637–647. https://doi.org/10.1016/j.bbalip.2011.06.009

    Article  CAS  Google Scholar 

  70. Zhou M, Robards K, Glennie-Holmes M, Helliwell S (1999) Oat lipids. J Am Oil Chem Soc 76:159–169. https://doi.org/10.1007/s11746-999-0213-1

    Article  CAS  Google Scholar 

  71. Liu K (2011) Comparison of lipid content and fatty acid composition and their distribution within seeds of 5 small grain species. J Food Sci 76:C334–C342. https://doi.org/10.1111/j.1750-3841.2010.02038.x

    Article  CAS  PubMed  Google Scholar 

  72. Silveira SF d S, Oliveira D d C d S, Wolter DD et al (2016) Performance of white oat cultivars for grain chemical content. Can J Plant Sci 96:530–538. https://doi.org/10.1139/cjps-2015-0145

    Article  CAS  Google Scholar 

  73. Leonova S, Shelenga T, Hamberg M, Konarev AV, Loskutov I, Carlsson AS (2008) Analysis of oil composition in cultivars and wild species of oat (Avena sp.). J Agric Food Chem 56:7983–7991. https://doi.org/10.1021/jf800761c

    Article  CAS  PubMed  Google Scholar 

  74. Hartunian Sowa SM, White PJ (1992) Characterization of starch isolated from oat groats with different amounts of lipid. Cereal Chem 69:521–527

    Google Scholar 

  75. Martinez MF, Arelovich HM, Wehrhahne LN (2010) Grain yield, nutrient content and lipid profile of oat genotypes grown in a semiarid environment. Field Crop Res 116:92–100. https://doi.org/10.1016/j.fcr.2009.11.018

    Article  Google Scholar 

  76. Holland JB, Frey KJ, Hammond EG (2001) Correlated responses of fatty acid composition, grain quality and agronomic traits to nine cycles of recurrent selection for increased oil content in oat. Euphytica 122:69–79. https://doi.org/10.1023/A:1012639821332

    Article  CAS  Google Scholar 

  77. Guo L, Tong L-T, Liu L, Zhong K, Qiu J, Zhou S (2014) The cholesterol-lowering effects of oat varieties based on their difference in the composition of proteins and lipids. Lipids Health Dis 13:182. https://doi.org/10.1186/1476-511X-13-182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Burns-Whitmore F, Heskey et al (2019) Alpha-Linolenic and linoleic fatty acids in the vegan diet: do they require dietary reference intake/adequate intake special consideration? Nutrients 11:2365. https://doi.org/10.3390/nu11102365

    Article  CAS  PubMed Central  Google Scholar 

  79. dos Santos ALT, Duarte CK, Santos M, Zoldan M, Almeida JC, Gross JL, Azevedo MJ, Lichtenstein AH, Zelmanovitz T (2018) Low linolenic and linoleic acid consumption are associated with chronic kidney disease in patients with type 2 diabetes. PLoS One 13:e0195249. https://doi.org/10.1371/journal.pone.0195249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kaur N, Chugh V, Gupta AK (2014) Essential fatty acids as functional components of foods- a review. J Food Sci Technol 51:2289–2303. https://doi.org/10.1007/s13197-012-0677-0

    Article  CAS  PubMed  Google Scholar 

  81. Thro AM, Frey KJ, Hammond EG (1985) Inheritance of Palmitic, oleic, linoleic, and Linolenic fatty acids in Groat oil of oats 1. Crop Sci 25:40–44. https://doi.org/10.2135/cropsci1985.0011183X002500010011x

    Article  CAS  Google Scholar 

  82. Briggs M, Petersen K, Kris-Etherton P (2017) Saturated fatty acids and cardiovascular disease: replacements for saturated fat to reduce cardiovascular risk. Healthcare 5:29. https://doi.org/10.3390/healthcare5020029

    Article  PubMed Central  Google Scholar 

  83. Zhou Z, Lakhssassi N, Cullen MA, el Baz A, Vuong TD, Nguyen HT, Meksem K (2019) Assessment of phenotypic variations and correlation among seed composition traits in mutagenized soybean populations. Genes (Basel) 10:975. https://doi.org/10.3390/genes10120975

    Article  CAS  Google Scholar 

  84. Frey KJ, Holland JB (1999) Nine cycles of recurrent selection for increased groat-oil content in oat. Crop Sci 39:1636–1641. https://doi.org/10.2135/cropsci1999.3961636x

    Article  Google Scholar 

Download references

Funding

The research and fellowships were supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grant nos. 2016/10060-9 and 2014/05151-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Pegoraro.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Maximino, J.V., Barros, L.M., Pereira, R.M. et al. Mineral and Fatty Acid Content Variation in White Oat Genotypes Grown in Brazil. Biol Trace Elem Res 199, 1194–1206 (2021). https://doi.org/10.1007/s12011-020-02229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02229-1

Keywords

Navigation