Skip to main content
Log in

Are Heavy Metal Exposure and Trace Element Levels Related to Metabolic and Endocrine Problems in Polycystic Ovary Syndrome?

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

A Correction to this article was published on 20 November 2020

This article has been updated

Abstract

This study aimed to determine the relationship between the metabolic and endocrinological pathologies in polycystic ovary syndrome (PCOS) and the levels of arsenic, chromium, cadmium, lead, mercury, antimony, zinc, and copper to evaluate the relationship of these toxic metals with inflammatory/oxidative parameters. This study included a total of 154 patients (84 with PCOS, 70 healthy volunteers). Metabolic and endocrine parameters and arsenic, chromium, cadmium, lead, mercury, antimony, zinc, and copper serum levels of the patients were compared between the groups. Considering the action mechanism of toxic metals, serum malondialdehyde (MDA), superoxide dismutase (SOD), serum total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), tumor necrosis factor-alpha (TNFα), and high-sensitivity C-reactive protein (HsCRP) levels were determined. Serum TAS (p = 0.002), OSI (p = 0.006), SOD (p = 0.006), zinc (p = 0.010), and copper (p = 0.030) values were statistically lower whereas TOS (p = 0.008), MDA (p < 0.001), HsCRP (p < 0.001), TNFα (p < 0.001), antimony (p < 0.001), cadmium (p < 0.001), lead (p < 0.001), and mercury (p < 0.001) levels were significantly higher in the PCOS group than those determined in the control group. Antimony was positively correlated with fasting glucose (FG) and HOMA-IR while cadmium, in addition to FG and HOMA-IR, positively correlated with insulin and lead had a positive correlation only with FG (p < 0.05). Also, these three heavy metals correlated positively with some oxidative system and inflammatory parameters and negatively with the antioxidant system parameters (p < 0.05). In conclusion, heavy metal exposures in PCOS may be related to insulin resistance and hirsutism through oxidative and inflammatory mechanisms. This approach can be used to identify the risky patient group and to develop new treatment modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 20 November 2020

    The original version of this article unfortunately contained a mistake in the Study Population section under Materials and Method.

References

  1. Teede HJ, Misso ML, Deeks AA, Moran LJ, Stuckey BG, Wong JL, Norman RJ, Costello MF, Groups GD (2011) Assessment and management of polycystic ovary syndrome: summary of an evidence-based guideline. Med J Aust 195:S65–S112

    PubMed  Google Scholar 

  2. Roe AH, Dokras A (2011) The diagnosis of polycystic ovary syndrome in adolescents. Rev Obstet Gynecol 4(2):45–51

    PubMed  PubMed Central  Google Scholar 

  3. Yildiz BO, Bozdag G, Yapici Z, Esinler I, Yarali H (2012) Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum Reprod 27(10):3067–3073

    PubMed  Google Scholar 

  4. Amato M, Vesco R, Vigneri E, Ciresi A, Giordano C (2015) Hyperinsulinism and polycystic ovary syndrome (PCOS): role of insulin clearance. J Endocrinol Investig 38(12):1319–1326

    CAS  Google Scholar 

  5. Yeon Lee J, Baw C-K, Gupta S, Aziz N, Agarwal A (2010) Role of oxidative stress in polycystic ovary syndrome. Curr Womens Health Rev 6(2):96–107

    Google Scholar 

  6. Ghafghazi T, Mennear JH (1975) The inhibitory effect of cadmium on the secretory activity of the isolated perfused rat pancreas. Toxicol Appl Pharmacol 31(1):134–142

    CAS  Google Scholar 

  7. Padilla MA, Elobeid M, Ruden DM, Allison DB (2010) An examination of the association of selected toxic metals with total and central obesity indices: NHANES 99-02. Int J Environ Res Public Health 7(9):3332–3347

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu W, Zhang B, Huang Z, Pan X, Chen X, Hu C, Liu H, Jiang Y, Sun X, Peng Y (2018) Cadmium body burden and gestational diabetes mellitus: a prospective study. Environ Health Perspect 126(2):027006

    PubMed  PubMed Central  Google Scholar 

  9. Farzan SF, Gossai A, Chen Y, Chasan-Taber L, Baker E, Karagas M (2016) Maternal arsenic exposure and gestational diabetes and glucose intolerance in the new hampshire birth cohort study. Environ Health 15(1):106

    PubMed  PubMed Central  Google Scholar 

  10. Chen YW, Yang CY, Huang CF, Hung DZ, Leung YM, Liu SH (2009) Heavy metals, islet function and diabetes development. Islets 1(3):169–176

    PubMed  Google Scholar 

  11. Insenser M, Montes-Nieto R, Murri M, Escobar-Morreale HF (2013) Proteomic and metabolomic approaches to the study of polycystic ovary syndrome. Mol Cell Endocrinol 370(1-2):65–77

    CAS  PubMed  Google Scholar 

  12. Sanchez T (2018) Effects of mercury, lead, arsenic and zinc to human renal oxidative stress and functions: a review. Arch Med 4(1):2

    Google Scholar 

  13. Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    PubMed Central  Google Scholar 

  14. Runnebaum B, Rabe T (1997) Gynecological endocrinology and reproductive medicine, vol 1. Springer Verlag, Berlin Heidelberg

  15. Ganz T, Nemeth E (2015) Iron homeostasis in host defence and inflammation. Nat Rev Immunol 15(8):500–510

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Eshre R (2004) Asrm-sponsored pcos consensus workshop group revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 81(1):19–25

    Google Scholar 

  17. Legro RS, Castracane VD, Kauffman RP (2004) Detecting insulin resistance in polycystic ovary syndrome: purposes and pitfalls. Obstet Gynecol Surv 59(2):141–154

    PubMed  Google Scholar 

  18. Yesim Göçmen A, Gümüşü S, Semiz E (2004) Association between paraoxonase-1 activity and lipid peroxidation indicator levels in people living in the antalya region with angiographically documented coronary artery disease. Clin Cardiol 27(7):426–430

    Google Scholar 

  19. Coskun A, Arikan T, Kilinc M, Arikan DC, Ekerbicer HC (2013) Plasma selenium levels in Turkish women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 168(2):183–186

    CAS  PubMed  Google Scholar 

  20. González F, Considine RV, Abdelhadi OA, Acton AJ (2020) Inflammation triggered by saturated fat ingestion is linked to insulin resistance and hyperandrogenism in PCOS. J Clin Endocrinol Metab 105. https://doi.org/10.1210/clinem/dgaa108

  21. Jeelani H, Ganie MA, Masood A, Amin S, Kawa IA, Fatima Q, Manzoor S, Parvez T, Naikoo NA, Rashid F (2019) Assessment of pon1 activity and circulating tf levels in relation to BMI, testosterone, HOMA-IR, HDL-C, LDL-C, CHO, SOD activity and tac in women with PCOS: an observational study. Diabetes Metab Syndr 13(5):2907–2915

    PubMed  Google Scholar 

  22. Sattar N (2009) PCOS, insulin resistance and long-term risks for diabetes and vascular disease. Br J Diabetes Vasc Dis 9(1):15–18

    CAS  Google Scholar 

  23. Hectors T, Vanparys C, Van Der Ven K, Martens G, Jorens P, Van Gaal L, Covaci A, De Coen W, Blust R (2011) Environmental pollutants and type 2 diabetes: a review of mechanisms that can disrupt beta cell function. Diabetologia 54(6):1273–1290

    CAS  PubMed  Google Scholar 

  24. Alonso-Magdalena P, Ropero AB, Carrera MP, Cederroth CR, Baquie M, Gauthier BR, Nef S, Stefani E, Nadal A (2008) Pancreatic insulin content regulation by the estrogen receptor erα. PLoS One 3(4):e2069

    PubMed  PubMed Central  Google Scholar 

  25. Sundar S, Chakravarty J (2010) Antimony toxicity. Int J Environ Res Public Health 7(12):4267–4277

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Menke A, Guallar E, Cowie CC (2016) Metals in urine and diabetes in us adults. Diabetes 65(1):164–171

    CAS  PubMed  Google Scholar 

  27. Zheng G, Wang L, Guo Z, Sun L, Wang L, Wang C, Zuo Z, Qiu H (2015) Association of serum heavy metals and trace element concentrations with reproductive hormone levels and polycystic ovary syndrome in a Chinese population. Biol Trace Elem Res 167(1):1–10

    CAS  PubMed  Google Scholar 

  28. Galán A, García-Bermejo L, Troyano A, Vilaboa NE, Fernández C, de Blas E, Aller P (2001) The role of intracellular oxidation in death induction (apoptosis and necrosis) in human promonocytic cells treated with stress inducers (cadmium, heat, x-rays). Eur J Cell Biol 80(4):312–320

    PubMed  Google Scholar 

  29. Lei L, Jin T, Zhou Y (2006) The effects of cadmium on the levels of insulin in smelters. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 24(1):3–6

    CAS  PubMed  Google Scholar 

  30. Świergosz-Kowalewska R (2001) Cadmium distribution and toxicity in tissues of small rodents. Microsc Res Tech 55(3):208–222

    PubMed  Google Scholar 

  31. Han JC, Park SY, Hah BG, Choi GH, Kim YK, Kwon TH, Kim EK, Lachaal M, Jung CY, Lee W (2003) Cadmium induces impaired glucose tolerance in rat by down-regulating glut4 expression in adipocytes. Arch Biochem Biophys 413(2):213–220

    CAS  PubMed  Google Scholar 

  32. Swaddiwudhipong W, Mahasakpan P, Limpatanachote P, Krintratun S (2010) Correlations of urinary cadmium with hypertension and diabetes in persons living in cadmium-contaminated villages in northwestern Thailand: a population study. Environ Res 110(6):612–616

    CAS  PubMed  Google Scholar 

  33. Moon SS (2013) Association of lead, mercury and cadmium with diabetes in the Korean population: the Korea national health and nutrition examination survey (KNHANES) 2009–2010. Diabet Med 30(4):e143–e148

    CAS  PubMed  Google Scholar 

  34. Schwartz GG, Il’yasova D, Ivanova A (2003) Urinary cadmium, impaired fasting glucose, and diabetes in the NHANES III. Diabetes Care 26(2):468–470

    CAS  PubMed  Google Scholar 

  35. Kurdoglu Z, Kurdoglu M, Demir H, Sahin H (2012) Serum trace elements and heavy metals in polycystic ovary syndrome. Hum Exp Toxicol 31(5):452–456

    CAS  PubMed  Google Scholar 

  36. Feng W, Cui X, Liu B, Liu C, Xiao Y, Lu W, Guo H, He M, Zhang X, Yuan J (2015) Association of urinary metal profiles with altered glucose levels and diabetes risk: a population-based study in china. PLoS One 10(4):e0123742. https://doi.org/10.1371/journal.pone.0123742

  37. Tandon S, Singh S, Prasad S, Srivastava S, Siddiqui M (2002) Reversal of lead-induced oxidative stress by chelating agent, antioxidant, or their combination in the rat. Environ Res 90(1):61–66

    CAS  PubMed  Google Scholar 

  38. Nazem MR, Hedayati M, Asadi M, Emami A (2016) Mutual interaction between obesity and zinc deficiency. J Obesity 2(2):028

    Google Scholar 

  39. Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    CAS  PubMed  Google Scholar 

  40. Guler I, Himmetoglu O, Turp A, Erdem A, Erdem M, Onan MA, Taskiran C, Taslipinar MY, Guner H (2014) Zinc and homocysteine levels in polycystic ovarian syndrome patients with insulin resistance. Biol Trace Elem Res 158(3):297–304

    CAS  PubMed  Google Scholar 

  41. Taylor CG (2005) Zinc, the pancreas, and diabetes: Insights from rodent studies and future directions. Biometals 18(4):305–312

    CAS  PubMed  Google Scholar 

  42. Foroozanfard F, Jamilian M, Jafari Z, Khassaf A, Hosseini A, Khorammian H, Asemi Z (2015) Effects of zinc supplementation on markers of insulin resistance and lipid profiles in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Exp Clin Endocrinol Diabetes 123(04):215–220

    CAS  PubMed  Google Scholar 

  43. Jamilian M, Foroozanfard F, Bahmani F, Talaee R, Monavari M, Asemi Z (2016) Effects of zinc supplementation on endocrine outcomes in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res 170(2):271–278

    CAS  PubMed  Google Scholar 

  44. Spritzer PM, Lecke SB, Fabris VC, Ziegelmann PK, Amaral L (2017) Blood trace element concentrations in polycystic ovary syndrome: systematic review and meta-analysis. Biol Trace Elem Res 175(2):254–262

    CAS  PubMed  Google Scholar 

  45. Jackson L, Howards P, Wactawski-Wende J, Schisterman E (2011) The association between cadmium, lead and mercury blood levels and reproductive hormones among healthy, premenopausal women. Hum Reprod 26(10):2887–2895

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Krieg EF Jr (2007) The relationships between blood lead levels and serum follicle stimulating hormone and luteinizing hormone in the third national health and nutrition examination survey. Environ Res 104(3):374–382

    CAS  PubMed  Google Scholar 

  47. Pollack AZ, Schisterman EF, Goldman LR, Mumford SL, Albert PS, Jones RL, Wactawski-Wende J (2011) Cadmium, lead, and mercury in relation to reproductive hormones and anovulation in premenopausal women. Environ Health Perspect 119(8):1156–1161

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gallagher CM, Moonga BS, Kovach JS (2010) Cadmium, follicle-stimulating hormone, and effects on bone in women age 42–60 years, NHANES iii. Environ Res 110(1):105–111

    CAS  PubMed  Google Scholar 

  49. Spaczynski RZ, Arici A, Duleba AJ (1999) Tumor necrosis factor-α stimulates proliferation of rat ovarian theca-interstitial cells. Biol Reprod 61(4):993–998

    CAS  PubMed  Google Scholar 

  50. Zhang L-H, Rodriguez H, Ohno S, Miller WL (1995) Serine phosphorylation of human p450c17 increases 17, 20-lyase activity: implications for adrenarche and the polycystic ovary syndrome. Proc Natl Acad Sci 92(23):10619–10623

    CAS  PubMed  Google Scholar 

  51. Hatch EE, Nelson JW, Stahlhut RW, Webster TF (2010) Association of endocrine disruptors and obesity: perspectives from epidemiological studies. Int J Androl 33(2):324–332

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mailloux R, Lemire J, Appanna V (2007) Aluminum-induced mitochondrial dysfunction leads to lipid accumulation in human hepatocytes: a link to obesity. Cell Physiol Biochem 20(5):627–638

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Kara.

Ethics declarations

The study was approved by the Yozgat Bozok University Clinical Research Ethics Committee (2017-KAEK-189_2019.12.11_15), and an informed consent was obtained from all participants.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article unfortunately contained a mistake in the Study Population section under Materials and Method. In the first sentence, January 2019 and February 2020 should be December 2019 - March 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirmizi, D.A., Baser, E., Turksoy, V.A. et al. Are Heavy Metal Exposure and Trace Element Levels Related to Metabolic and Endocrine Problems in Polycystic Ovary Syndrome?. Biol Trace Elem Res 198, 77–86 (2020). https://doi.org/10.1007/s12011-020-02220-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02220-w

Keywords

Navigation