Skip to main content
Log in

Effects of Vitamin E and Selenium on Growth Performance, Antioxidant Capacity, and Metabolic Parameters in Growing Furring Blue Foxes (Alopex lagopus)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of this study was to determine whether different dietary vitamin E (VE) and selenium (Se) levels affect the nutrient digestibility, production performance, and antioxidant abilities of growing furring blue foxes. A 4 × 2 factorial arrangement that included 4 levels of VE (0, 100, 200, or 400 mg/kg diet from α-tocopherol acetate) and 2 levels of Se (0 or 0.2 mg/kg diet from glycine selenium) was performed from mid-September to pelting. A metabolism study was conducted for four days starting at the 30th day of the trial. Serum samples were collected at the last day of the study. The results showed that supplementation of growing furring blue fox diets with VE and Se significantly affected the average daily gain (ADG), average daily feed intake, and feed conversion ratio (F:G) (P < 0.05). Dietary Se supplementation enhanced protein and fat digestibility of male blue foxes. There were significant effects of different VE and Se levels in diets on serum antioxidant parameters and metabolic parameters of blue foxes (P < 0.05). In conclusion, this research indicated that dietary supplementation with VE improved ADG and F:G of blue foxes. Addition of VE and Se to blue fox diets increased the antioxidant capacity of blue foxes. The diet with high VE and Se supplementation reduced glucose and triglycerides concentrations in serum. The present study found that growing furring blue foxes had increased growth performance and antioxidant abilities when fed diets with 200 mg VE/kg and nearly 0.1 mg Se/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Metre DC, Callan RJ (2001) Selenium and vitamin E. Vet Clin N Am-Food A 17(2):373–402. https://doi.org/10.1016/S0749-0720(15)30034-7

    Article  Google Scholar 

  2. Horwitt MK (1986) Interpretations of requirements for thiamin, riboflavin, niacin-tryptophan, and vitamin E plus comments on balance studies and vitamin B-6. Am J Clin Nutr 44(6):973–985. https://doi.org/10.1093/ajcn/44.6.973

    Article  CAS  PubMed  Google Scholar 

  3. Gossum AV, Kurian R, Whitwell J, Jeejeebhoy KN (1988) Decrease in lipid peroxidation measured by breath pentane output in normals after oral supplementation with vitamin E. Clin Nutr 7(1):53–57. https://doi.org/10.1016/0261-5614(88)90012-X

    Article  Google Scholar 

  4. Surai PF, Fisinin VI (2016) Selenium in sow nutrition. Anim Feed Sci Technol 211:18–30. https://doi.org/10.1016/j.anifeedsci.2015.11.006

    Article  CAS  Google Scholar 

  5. Surai PF (2002) Natural antioxidants in avian nutrition and reproduction. Dissertation, Nottingham University

  6. Surai PF (2006) Selenium in nutrition and health. Dissertation, Nottingham University

  7. Ebeid TA, Zeweil HS, Basyony MM, Dosoky WM, Badry H (2013) Fortification of rabbit diets with vitamin E or selenium affects growth performance, lipid peroxidation, oxidative status and immune response in growing rabbits. Livest Sci 155(2–3):323–331. https://doi.org/10.1016/j.livsci.2013.05.011

    Article  Google Scholar 

  8. Avanzo JL, de Mendonça CX Jr, Pugine SM, de Cerqueira Cesar M (2001) Effect of vitamin E and selenium on resistance to oxidative stress in chicken superficial pectoralis muscle. Comp Biochem Physiol C 129 (2):163–173 https://doi.org/10.1016/S1532-0456(01)00197-1

    CAS  Google Scholar 

  9. Teixeira AGV, Lima FS, Bicalho MLS, Kussler A, Lima SF, Felippe MJ, Bicalho RC (2013) Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on immunity, health, and growth of dairy calves. J Dairy Sci 97:4216–4226. https://doi.org/10.1016/j.tvjl.2013.02.022

    Article  CAS  Google Scholar 

  10. Falk M, Bernhoft A, Framstad T, Salbu B, Wisløff H, Kortner TM, Kristoffersen AB, Oropeza-Moe M (2018) Effects of dietary sodium selenite and organic selenium sources on immune and inflammatory responses and selenium deposition in growing pigs. J Trace Elem Med Biol 50:527–536. https://doi.org/10.1016/j.jtemb.2018.03.003

    Article  CAS  PubMed  Google Scholar 

  11. NRC (1982) Nutrient requirements of mink and foxes. 2nd rev. National Academy of Sciences, Washington, DC

  12. Ender F, Helgebostad A (1975) Unsaturated dietary fat and lipoperoxides as etiological factors in vitamin E deficiency in mink. Acta Vet Scand Suppl 16(55):1–25

    Google Scholar 

  13. Engberg RM, Jakobsen K, Børsting CF, Gjern H (1993) On the utilization, retention and status of vitamin E in mink (Mustela vison) under dietary oxidative stress. J Anim Physiol Anim Nutr 69(1–5):66–78. https://doi.org/10.1111/j.1439-0396.1993.tb00791.x

    Article  CAS  Google Scholar 

  14. Ender F, Helgebostad A (1953) Yellow fat disease in fur bearing animals. Proc XV Int Vet Cong Stockholm 1 Pt 1:636

    Google Scholar 

  15. Stowe HD, Whitehair CK (1963) Gross and microscopic pathology of tocopherol-deficient mink. J Nutr 81(81):287–300. https://doi.org/10.1093/jn/81.4.287

    Article  CAS  PubMed  Google Scholar 

  16. Van Vleet JF (1975) Experimentally induced vitamin E-selenium deficiency in the growing dog. J Am Vet Med Assoc 166(8):769–774

    PubMed  Google Scholar 

  17. Müller AS, Pallauf J, Most E (2002) Parameters of dietary selenium and vitamin E deficiency in growing rabbits. J Trace Elem Med Biol 16(1):47–55. https://doi.org/10.1016/S0946-672X(02)80008-6

    Article  PubMed  Google Scholar 

  18. Rd Miller E, Pastorbarriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E (2005) Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 142(2):37–47. https://doi.org/10.7326/0003-4819-142-1-200501040-00110

    Article  Google Scholar 

  19. Aburto A, Britton W (1998) Effects of different levels of vitamins A and E on the utilization of cholecalciferol by broiler chickens. Poult Sci 77(4):570–577. https://doi.org/10.1093/ps/77.4.570

    Article  CAS  PubMed  Google Scholar 

  20. Kim YY, Mahan DC (2001) Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs. J Anim Sci 79(4):942–948. https://doi.org/10.2527/2001.794942x

    Article  CAS  PubMed  Google Scholar 

  21. Nolan B, Hess M, Howell A, Martin JV, Wagner GC, Fisher H (2005) High vitamin E and selenium elevate, whereas diphenyl-para-phenylenediamine plus caffeine lowers liver fat in alcohol-fed rats. Nutr Res 25(7):701–709. https://doi.org/10.1016/j.nutres.2005.07.004

    Article  CAS  Google Scholar 

  22. Finch JM, Turner RJ (1989) Enhancement of ovine lymphocyte responses: a comparison of selenium and vitamin E supplementation. Vet Immunol Immunopathol 23(3–4):245–256. https://doi.org/10.1016/0165-2427(89)90138-4

    Article  CAS  PubMed  Google Scholar 

  23. Stabel JR, Nonnecke BJ, Reinhardt TA (1990) Effect of in vitro selenium repletion on bovine lymphocyte proliferation. Nutr Res 10(9):1053–1059. https://doi.org/10.1016/S0271-5317(05)80047-8

    Article  CAS  Google Scholar 

  24. Yasunaga T, Kato H, Ohgaki K, Inamoto T, Hikasa Y (1982) Effect of vitamin E as an immunopotentiation agent for mice at optimal dosage and its toxicity at high dosage. J Nutr 112(6):1075–1084. https://doi.org/10.1093/jn/112.6.1075

    Article  CAS  PubMed  Google Scholar 

  25. Canadian Council on Animal Care (1993) Guide to the care and use of expermental animals, vol 2nd. CCAC, Ottawa

    Google Scholar 

  26. AOAC (2003) Official methods of analysis. Association of Official Analytical Chemists, Inc, Arlington, p 1298pp

    Google Scholar 

  27. AOAC (2000) Official methods of analysis: selenium in feeds and premixes. Association of Official Analytical Chemists, Inc, Arlington

    Google Scholar 

  28. Błażewicz A, Klatka M, Astel A, Koronaglowniak I, Dolliver W, Szwerc W, Kocjan R (2015) Serum and urinary selenium levels in obese children: a cross-sectional study. J Trace Elem Med Biol 29:116–122. https://doi.org/10.1016/j.jtemb.2014.07.016

    Article  CAS  PubMed  Google Scholar 

  29. Alvarez JC, De Mazancourt P (2001) Rapid and sensitive high-performance liquid chromatographic method for simultaneous determination of retinol, α-tocopherol, 25-hydroxyvitamin D-3 and 25-hydroxyvitamin D-2 in human plasma with photodiode-array ultraviolet detection. J Chromatogr B Biomed Sci Appl 755(1):129–135. https://doi.org/10.1016/S0378-4347(01)00047-0

    Article  CAS  PubMed  Google Scholar 

  30. Eiben C, Végi B, Virág G, Gódor-Surmann K, Kustos K, Maró A, Odermatt M, Zsédely E, Tóth T, Schmidt J (2011) Effect of level and source of vitamin E addition of a diet enriched with sunflower and linseed oils on growth and slaughter traits of rabbits. Livest Sci 139(3):196–205. https://doi.org/10.1016/j.livsci.2011.01.010

    Article  Google Scholar 

  31. Työppönen J, Hakkarainen J, Juokslahti T, Lindberg P (1984) Vitamin E requirement of mink with special reference to tocopherol composition in plasma, liver, and adipose tissue. Am J Vet Res 45(9):1790–1794

    PubMed  Google Scholar 

  32. Chauhan SS, Ponnampalam EN, Celi P, Hopkins DL, Leury BJ, Dunshea FR (2016) High dietary vitamin E and selenium improves feed intake and weight gain of finisher lambs and maintains redox homeostasis under hot conditions. Small Rumin Res 137:17–23. https://doi.org/10.1016/j.smallrumres.2016.02.011

    Article  Google Scholar 

  33. Finch JM, Turner RJ (1996) Effects of selenium and vitamin E on the immune responses of domestic animals. Res Vet Sci 60(2):97–106. https://doi.org/10.1016/S0034-5288(96)90001-6

    Article  CAS  PubMed  Google Scholar 

  34. Kiiskinen T, Maekelae J (1977) The results of mineral supplementation in the feeding of mink. Scientifur 1:41–42

    Google Scholar 

  35. Adkins RS, Ewan RC (1984) Effect of supplemental selenium on pancreatic function and nutrient digestibility in the pig. J Anim Sci 58(2):351–355. https://doi.org/10.2527/jas1984.582351x

    Article  CAS  PubMed  Google Scholar 

  36. Nuijten WGM, Morel PCH, Purchas RW (2010) Effect of lipid type, selenium and vitamin E on total tract nutrient digestibility in growing pigs. Proc N Z Soc Anim Prod 70:266–268

    Google Scholar 

  37. Malhi M (2015) Effects of dietary selenium supplementation on nutrient digestibility and gastrointestinal development of goats. International Conference on Agriculture Food and Animal Science

  38. Tian JZ, Yun MS, Ju WS, Long HF, Kim JH, Kil DY, Chang JS, Cho SB, Kim YY, Han IK (2006) Effects of dietary selenium supplementation on growth performance, selenium retention in tissues and nutrient digestibility in growing-finishing pigs. Asian Austral J Anim 19(19):55–60. https://doi.org/10.5713/ajas.2006.55

    Article  CAS  Google Scholar 

  39. Herdt TH, Rumbeiha W, Braselton WE (2000) The use of blood analyses to evaluate mineral status in livestock. Vet Clin North Am Food Anim Pract 16(3):423–444. https://doi.org/10.1016/S0749-0720(15)30078-5

    Article  CAS  PubMed  Google Scholar 

  40. Ullrey DE (1992) Basis for regulation of selenium supplements in animal diets. J Anim Sci 70(12):3922–3927. https://doi.org/10.2527/1992.70123922x

    Article  CAS  PubMed  Google Scholar 

  41. NRC (1983) Selenium in nutrition. National Academy Press, Washington, DC

    Google Scholar 

  42. Alhidary IA, Shini S, Al Jassim RA, Abudabos AM, Gaughan JB (2015) Effects of selenium and vitamin E on performance, physiological response, and selenium balance in heat-stressed sheep. J Anim Sci 93(2):576–588. https://doi.org/10.2527/jas2014-8419

    Article  CAS  PubMed  Google Scholar 

  43. Weiss WP, Eastridge ML (2005) Selenium sources for dairy cattle. tri-state dairy nutrition conference, Fort Wayne, Indiana USA

  44. Schwartz K, Foltz GM (1957) Selenium as an integral part of factor 3 against diety necrotic liver degeneration. J Am Chem Soc 79:3292–3293

    Article  Google Scholar 

  45. Herrera E, Barbas C (2001) Vitamin E: action, metabolism and perspectives. J Physiol Biochem 57(1):43–56. https://doi.org/10.1007/BF03179812

    Article  CAS  PubMed  Google Scholar 

  46. Jewell DE, Toll PW, Wedekind KJ, Zicker SC (2000) Effect of increasing dietary antioxidants on concentrations of vitamin E and total alkenals in serum of dogs and cats. Vet Ther 1(4):264–272

    CAS  PubMed  Google Scholar 

  47. Ferguson LR, Karunasinghe N, Zhu S, Wang AH (2012) Selenium and its’ role in the maintenance of genomic stability. Mutat Res-Fund Mol M 733(1–2):100–110. https://doi.org/10.1016/j.mrfmmm.2011.12.011

    Article  CAS  Google Scholar 

  48. Lan T, Yan LJ, Pei JR, Gao L, Li XZ, Liu MF, Li SC, Zhou LW, Liu ZC, Zeng XC (2012) Protective effect of selenium and vitamin E on rat myocardial oxidative injury. Chin J Catal 31(4):381–384. https://doi.org/10.3760/cma.j.issn.l000-4955.2012.04.009

    Article  CAS  Google Scholar 

  49. De Vore VR, Colnago GL, Jensen LS, Greene BE (1983) Thiobarbituric acid values and glutathione perioxidase activity in meat from chickens fed a selenium-supplemented diet. J Food Sci 48(1):300–306

    Article  Google Scholar 

  50. Patching SG, Gardiner R (1999) Recent developments in selenium metabolism and chemical speciation: a review. J Trace Elem Med Biol 13(4):193–214. https://doi.org/10.1016/S0946-672X(99)80037-6

    Article  CAS  PubMed  Google Scholar 

  51. Virgili F, Canali R, Figus E, Vignolini F, Nobili F, Mengheri E (1999) Intestinal damage induced by zinc deficiency is associated with enhanced CuZn superoxide dismutase activity in rats: effect of dexamethasone or thyroxine treatment. Free Radic Biol Med 26(9–10):1194–1201. https://doi.org/10.1016/S0891-5849(98)00307-4

    Article  CAS  PubMed  Google Scholar 

  52. Akiyama S, Inagaki M, Tsuji M, Gotoh H, Gotoh T, Washio K, Gotoh Y, Oguchi K (2005) Comparison of effect of vitamin E-coated dialyzer and oral vitamin E on hemodialysis-induced Cu/Zn-superoxide dismutase. Am J Nephrol 25(5):500–506. https://doi.org/10.1159/000088172

    Article  CAS  PubMed  Google Scholar 

  53. Kurahashi T, Konno T, Otsuki N, Kwon M, Tsunoda S, Ito J, Fujii J (2012) A malfunction in triglyceride transfer from the intracellular lipid pool to apoB in enterocytes of SOD1-deficient mice. FEBS Lett 586(24):4289–4295. https://doi.org/10.1016/j.febslet.2012.09.047

    Article  CAS  PubMed  Google Scholar 

  54. Ziaie S, Jamaati H, Hajimahmoodi M, Hashemian SM, Fahimi F, Farzanegan B, Moghaddam G, Radmand G, Vahdani B, Nadji SA (2011) The relationship between vitamin e plasma and BAL concentrations, SOD activity and ventilatory support measures in critically ill patients. Iran J Pharm Res 10(4):953–960

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hemachand T, Shaha C (2003) Functional role of sperm surface glutathione S -transferases and extracellular glutathione in the haploid spermatozoa under oxidative stress. FEBS Lett 538(1–3):14–18. https://doi.org/10.1016/S0014-5793(03)00103-0

    Article  CAS  PubMed  Google Scholar 

  56. Zhong L, Holmgren A (2000) Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations. J Biol Chem 275:18121–18128. https://doi.org/10.1074/jbc.M000690200

    Article  CAS  PubMed  Google Scholar 

  57. Labunskyy VM, Lee BC, Handy DE, Loscalzo J, Hatfield DL, Gladyshev VN (2011) Both maximal expression of selenoproteins and selenoprotein deficiency can promote development of type 2 diabetes-like phenotype in mice. Antioxid Redox Signal 14(12):2327–2336. https://doi.org/10.1089/ars.2010.3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pinto A, Juniper DT, Sanil M, Morgan L, Clark L, Sies H, Rayman MP, Steinbrenner H (2012) Supranutritional selenium induces alterations in molecular targets related to energy metabolism in skeletal muscle and visceral adipose tissue of pigs. J Inorg Biochem 114(9):47–54. https://doi.org/10.1016/j.jinorgbio.2012.04.011

    Article  CAS  PubMed  Google Scholar 

  59. Arnér ES, Holmgren A (2010) Physiological functions of thioredoxin and thioredoxin reductase. FEBS J 267(20):6102–6109. https://doi.org/10.1046/j.1432-1327.2000.01701.x

    Article  Google Scholar 

  60. Van Haaften R, Haenen GR, Evelo CT, Bast A (2003) Effect of vitamin E on glutathione-dependent enzymes. Drug Metab Rev 35(2–3):215–253. https://doi.org/10.1081/DMR-120024086

    Article  CAS  PubMed  Google Scholar 

  61. Shinde PL, Dass RS, Garg AK (2009) Effect of vitamin E and selenium supplementation on haematology, blood chemistry and thyroid hormones in male buffalo (Bubalus bubalis) calves. J Anim Feed Sci 18(2):241–256. https://doi.org/10.22358/jafs/66388/2009

    Article  Google Scholar 

  62. Marsh JA, Dietert RR, Combs GF Jr (1981) Influence of dietary selenium and vitamin E on the humoral immune response of the chick. P Soc Exp Biol Med 166(2):228–236. https://doi.org/10.3181/00379727-166-41051

    Article  CAS  Google Scholar 

  63. Siami G, Schulert AR, Neal RA (1972) A possible role for the mixed function oxidase enzyme system in the requirement for selenium in the rat. J Nutr 102(7):857–861. https://doi.org/10.1093/jn/102.7.857

    Article  CAS  PubMed  Google Scholar 

  64. Panda P, Behera AA, Panda SK (2016) Evaluation of effect of vitamin-E on blood glucose and serum lipids in type-2 diabetes mellitus treatment. Glob J Res Anal 5(8):9–10

    Google Scholar 

  65. Crespo AMV, Lança MJ, Vasconcelos S, Andrade V, Rodrigues H, Santos MC (1995) Effect of selenium supplementation on some blood biochemical parameters in male rats. Biol Trace Elem Res 47(1–3):343–347. https://doi.org/10.1007/BF02790136

    Article  CAS  PubMed  Google Scholar 

  66. Corino C, Lo Fiego DP, Macchioni P, Pastorelli G, Di GA, Domeneghini C, Rossi R (2007) Influence of dietary conjugated linoleic acids and vitamin E on meat quality, and adipose tissue in rabbits. Meat Sci 76(1):19–28. https://doi.org/10.1016/j.meatsci.2006.10.007

    Article  CAS  PubMed  Google Scholar 

  67. Rayman MP, Stranges S, Griffin BA, Pastorbarriuso R, Guallar E (2011) Effect of supplementation with high-selenium yeast on plasma lipids: a randomized trial. Ann Intern Med 154(10):656–665. https://doi.org/10.7326/0003-4819-154-10-201105170-00005

    Article  PubMed  Google Scholar 

  68. González-Estecha M, Palazón-Bru I, Bodas-Pinedo A, Trasobares E, Palazón-Bru A, Fuentes M, Cuadrado-Cenzual MÁ, Calvo-Manuel E (2017) Relationship between serum selenium, sociodemographic variables, other trace elements and lipid profile in an adult spanish population. J Trace Elem Med Biol 43:93–105. https://doi.org/10.1016/j.jtemb.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  69. Kor NM, Ziaei N, Moradi K (2013) Effect of different levels of vitamin-E and selenomethionine supplementation on serum biochemistry in Lohman LS laying hens. Online Journal of Veterinary Research 17(7):383–390

    Google Scholar 

  70. Sugden EA, Hidiroglou M, Mitchell D (1978) Lack of an effect of dietary selenium on serum albumin, glucose and urea nitrogen in ewes. Can J Comp Med 42(3):376–378

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Innovation Program of Agricultural Science and Technology in CAAS (grant number CAAS-ASTIP-2017-ISAPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyu Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Liu, H., Zhang, T. et al. Effects of Vitamin E and Selenium on Growth Performance, Antioxidant Capacity, and Metabolic Parameters in Growing Furring Blue Foxes (Alopex lagopus). Biol Trace Elem Res 192, 183–195 (2019). https://doi.org/10.1007/s12011-019-1655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-1655-4

Keywords

Navigation