Skip to main content
Log in

Macroelements and Trace Elements in Invasive Signal Crayfish (Pacifastacus leniusculus) from the Wieprza River (Southern Baltic): Human Health Implications

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Signal crayfish (Pacifastacus leniusculus) is an invasive species displacing native European crayfish from their natural habitats. The elemental composition of the population from the southern Baltic coastal river and the potential health hazards are not known. The aim of the conducted research was to assess the quantitative content of Al, As, Ca, Cd, Cu, Fe, K, Mg, Na, Ni, Pb, Se, and Zn in meat, hepatopancreas, and exoskeleton in a population from Wieprza River (Poland) and compare the results with the recommendations of daily human consumption. Analysis also involved the composition of water and sediments. The concentrations of elements were analyzed using an Atomic Absorption Spectrometer. The bioconcentration factor (BCF) of elements in the signal crayfish was much higher from water than from sediments. Bioaccumulation of elements differed between the particular parts of the body of crayfish, e.g., Ca showed extreme predominance in the exoskeleton, while in meat exhibited a predominance of K, Na, Ca, and Mg. Among trace elements, crayfish meat was the richest in Zn, Cu, and Fe. The concentrations of non-essential Cd, Pb, and As were low compared to other determined elements. The highest concentrations of As, Cd, Cu, Fe, Ni, and Se were found in the hepatopancreas, while the highest levels of Al and Pb were found in the exoskeleton. Generally, it was found that the meat of P. leniusculus can be a perfect supplement to the human diet, and the consumption of 100 g of meat per day did not exceed the dietary reference values for essential elements and also for Al, As, Cd, Ni, and Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Barrento S, Marques A, Teixeira B, Analceto P, Carvalho ML, Vaz-Pires P, Nunes ML (2009) Macro and trace elements in two populations of brown crab Cancer pagurus: ecological and human health implications. J Food Compos Anal 22:65–71. https://doi.org/10.1016/j.jfca.2008.07.010

    Article  CAS  Google Scholar 

  2. Barrento S, Marques A, Teixeira B, Carvalho ML, Vaz-Pires P, Nunes ML (2009) Influence of season and sex on the contents of minerals and trace elements in brown crab (Cancer pagurus, Linnaeus, 1758). J Agric Food Chem 57:3253–3260. https://doi.org/10.1016/j.jfca.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  3. Rainbow PS (2007) Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Int 33:576–582. https://doi.org/10.1016/j.envint.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  4. Islam B, Mia B, Razzaque A, Sarker M, Rahman R, Jalil A, Rahim A, Roy DK (2016) Investigation on mineral composition of freshwater crab (Paratelphusa lamellifrons) of Padma River near Rajshahi City, Bangladesh. Int J Fish Aquatic Studies 4(6):236–240

    Google Scholar 

  5. Skorupski J, Szenejsko M, Śmietana P, Panicz R, Keszka S, Czerniejewski P, Soroka M, Orłowska L, Albrycht M, Zatoń-Dobrowolska M, Moska M, Kirczuk L, Rymaszewska A (2017) Invasive alien species - identification of threats to protect biodiversity. Wyd. Green Federation “GAJA”, Polish Society of Conservation Genetics LUTREOLA.

  6. Schulz R, Śmietana P (2001) Occurrence of native and introduced crayfish in Northeastern Germany and Northwestern Poland. B Fr Peche Pisci 361:629–641. https://doi.org/10.1051/kmae:2001009

    Article  Google Scholar 

  7. Dobrzycka-Krahel A, Skóra ME, Raczyński M, Szaniawska A (2017) The signal crayfish Pacifastacus leniusculus - distribution and invasion in the Southern Baltic Coastal River. Pol J Ecol 65(3):445–452

    Article  Google Scholar 

  8. Filipová L, Petrusek A, Matasová K, Delaunay C, Grandjean F (2013) Prevalence of the crayfish plague pathogen Aphanomyces astaci in populations of the signal crayfish Pacifastacus leniusculus in France: evaluating the threat to native crayfish. PLoS One 8(7):e70157. https://doi.org/10.1371/journal.pone.0070157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Momot WT, Gowing H, Jones PD (1978) The dynamics of crayfish and their role in aquatic ecosystems. Am Midl Nat 99(1):10–35

    Article  Google Scholar 

  10. Harlioğlu MM, Holdich DM (2001) Meat yields in the introduced freshwater crayfish, Pacifastacus leniusculus (Dana) and Astacus leptodactylus Eschscholtz, from British waters. Aquac Res 32:411–417. https://doi.org/10.1046/j.1365-2109.2001.00577.x

    Article  Google Scholar 

  11. Regulation EU, 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species

  12. Kouba A, Buřič M, Kozák P (2010) Bioaccumulation and effects of heavy metals in crayfish: a review. Water Air Soil Pollut 211:5–16. https://doi.org/10.1007/s11270-009-0273-8

    Article  CAS  Google Scholar 

  13. Rainbow PS, Luoma SN (2010) Trace metals in aquatic invertebrates. In: Beyer WN, Meador JP (eds) Environmental contaminants in biota: interpreting tissue concentrations. Taylor and Francis Books, Boca Raton, pp 231–252

    Google Scholar 

  14. Reichmuth JM, Weis P, Weis JS (2010) Bioaccumulation and depuration of metals in blue crabs (Callinectes sapidus Rathbun) from a contaminated and clean estuary. Environ Pollut 158:361–368

    Article  CAS  Google Scholar 

  15. Nieboer E, Richardson DHS (1980) The replacement of the nondescript “heavy metals” by a biologically and chemically significant classification of metal ions. Environ Pollut 1B:3–26

    Article  Google Scholar 

  16. Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120:497–507

    Article  CAS  Google Scholar 

  17. Goretti E, Pallottini M, Ricciarini MI, Selvaggi R, Cappelletti D (2016) Heavy metals bioaccumulation in selected tissues of red swamp crayfish: an easy tool for monitoring environmental contamination levels. Sci Total Environ 559:339–346. https://doi.org/10.1016/j.scitotenv.2016.03.169

    Article  CAS  PubMed  Google Scholar 

  18. Francesconi KA (2010) Arsenic species in seafood: origin and human health implications. Pure Appl Chem 82(2):373–381

    Article  CAS  Google Scholar 

  19. Maguire I, Klobučar G (2011) Size structure, maturity size, growth and condition index of stone crayfish (Austropotamobius torrentium) in North-West Croatia. Knowl Manag Aquat Ecosyst 401:12. https://doi.org/10.1051/kmae/2011026

    Article  Google Scholar 

  20. Jitar O, Teodosiu C, Oros A, Plavan G, Nicoara M (2015) Bioaccumulation of heavy metals in marine organisms from the Romanian sector of the Black Sea. New Biotechol 32:369–378

    Article  CAS  Google Scholar 

  21. Vrhovnik P, Arrebola JP, Serafimovski T, Dolenec T, Smuc NR, Dolenec M, Mutch E (2013) Potentially toxic contamination of sediments, water and two animal species un Lake Kalimanci, FYR Macedonia: relevance to human health. Environ Pollut 180:92–100

    Article  CAS  Google Scholar 

  22. Ross C, Taylor CL, Yaktine AL, del Valle HB (2011) Dietary reference intakes for calcium and vitamin D. National Academies Press, Washington. https://doi.org/10.17226/13050

    Book  Google Scholar 

  23. Salahinejad M, Aflaki F (2010) Toxic and essential elements content of black tea leaves and their tea infusion consumed in Iran. Biol Trace Elem Res 134:109–117. https://doi.org/10.1007/s121011-00908449-z

    Article  CAS  PubMed  Google Scholar 

  24. StatSoft Inc. (2016) Statistica (data analysis software system), version 12.1. www.statsoft.com

  25. Senze M, Kowalska-Góralska M, Pokorny P, Dobicki W, Polechoński R (2015) Accumulation of heavy metals in bottom sediments in Baltic Sea catchment rivers affected by the operations of petroleum and natural gas mines in Western Pomerania, Poland. Pol J Environ Stud 24(5):2167–2175

    Article  CAS  Google Scholar 

  26. The state of the environment in the West Pomeranian Voivodeship. Report 2018. Voivodeship inspectorate of environmental protection, Szczecin, pp. 192. (in Polish)

  27. Pokorny P, Senze M, Dobicki W, Kowalsak-Góra M, Polechoński R (2013) Geochemical assessment of Western Pomerania watercourse. Przem Chem 92(9):1768–1771

    CAS  Google Scholar 

  28. Hudina S, Zganec K, Hock K (2015) Differences in aggressive behaviour along the expanding range of an invasive crayfish: an important component of invasion dynamics. Biol Invasions 17:3101–3112

    Article  Google Scholar 

  29. Souty-Grosset C, Holdich DM, Noel P (2006) Atlas of crayfish of Europe. Museum National d’Histoire Naturalle, Paris

    Google Scholar 

  30. Śmietana P, Krzywosz T (2006) Determination of the rate of growth of Pacifastacus leniusculus in Lake Pobłędzie using polymodal length frequency distribution analysis. B Fr Peche Pisci 380–381:1229–1244

    Article  Google Scholar 

  31. Rebrina F, Skejo J, Lucić A, Hudina S (2015) Trait variability of the signal crayfish (Pacifastacus leniusculus) in a recently invaded region reflects potential benefits and trade-offs during dispersal. Aquat Invasions 10(1):41–50

    Article  Google Scholar 

  32. Capurro M, Galli L, Mori M, Salvidio S, Arillo A (2015) Reproductive cycle of Pacifastacus leniusculus (Dana) (Crustacea: Decapoda) from the Brugneto Lake (Liguria, northwest Italy). Ital J Zool 82(3):366–377. https://doi.org/10.1080/11250003.2015.1022235

    Article  Google Scholar 

  33. Protasowicki M, Własow T, Rajkowska M, Polna M, Bernard A (2013) Metal concentrations in selected organs of crayfish – Orconectes limosus and Pacifastacus leniusculus from Mazurian Lakes. J Elem 18(4):683–694. https://doi.org/10.5601/jelem.2013.18.4.537

    Article  Google Scholar 

  34. Tunca E, Ucuncu E, Ozkan AD, Ulger ZE, Cansizoglu AE, Tekinay T (2013) Differences in accumulation and distribution profile of heavy metals and metalloid between male and female crayfish (Astacus leptodactylus). B Environ Contam Tox 90:70–577. https://doi.org/10.1007/s00128-013-0960-4

    Article  CAS  Google Scholar 

  35. Adeyeye EI, Olanlokun JO, Falodun TO (2010) Proximate and mineral composition of whole body, flesh and exoskeleton of male and female common West African fresh water crab Sudananautes africanus africanus. Pol J Food Nut Sci 60(3):213–216

    CAS  Google Scholar 

  36. Jimmy UP, Arazu VN (2012) The Proximate and mineral composition of two edible crabs Callinectes amnicola and Uca tangeri (Crustecea: Decapoda) of the Cross river, Nigeria. Pak J Nutr 11(1):78–82

    Article  CAS  Google Scholar 

  37. Nędzarek A, Czerniejewski P, Drost A, Harasimiuk F, Machula S, Tórz A, Masalski P (2017) The distribution of elements in the body of invasive Chinese mitten crabs (Eriocheir sinensis H. Milne-Edwards, 1853) from Lake Dąbie, Poland. J Food Compos Anal 60:1–9

    Article  Google Scholar 

  38. Nędzarek A, Czerniejewski P, Tórz A (2019) Macro- and trace elements in Chinese mitten crabs (Eriocheir sinensis) from Szczecin Lagoon, Poland – implications for human health. Aquaculture 506:229–237. https://doi.org/10.1016/j.aquaculture.2019.03.042

    Article  CAS  Google Scholar 

  39. Pires C, Marques A, Carvalho ML, Batista I (2017) Chemical characterization of Cancer pagurus, Maja Squinado, Necora puber and Carcinus maenas shells. Poul Fish Wildl Sci 5(1):1–6. https://doi.org/10.4172/2375-446X.1000181

    Article  Google Scholar 

  40. Boßelmann F, Romano P, Fabritius H, Raabe D, Epple M (2007) The composition of the exoskeleton of two crustacean: the American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochim Acta 463:65–68

    Article  Google Scholar 

  41. Hothem RL, Bergen DR, Bauer ML, Crayon JJ, Meckstroth AM (2007) Mercury and trace elements in crayfish from Northern California. B Environ Contam Tox 79:628–632. https://doi.org/10.1007/s00128-007-9304-6

    Article  CAS  Google Scholar 

  42. Rana MS, Halim MA, Safiullah S, Mamun Mollan M, Azam MS, Goni MA, Kamal Hossain M, Rana MM (2009) Removal of heavy metal from contaminated water by biopolymer crab shell chitosan. J Appl Sci 9(15):2762–2769

    Article  CAS  Google Scholar 

  43. Bergey LL, Weis JS (2007) Molting as a mechanism of depuration of metals in the fiddler crab, Uca pugnax. Mar Environ Res 64:556–562

    Article  CAS  Google Scholar 

  44. Tao Y, Yuan Z, Xiaona H, Wein M (2012) Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotox Environ Safe 81:55–64

    Article  CAS  Google Scholar 

  45. Costanza J, Lynch DG, Boethling RS, Arnot JA (2012) Use of the bioaccumulation factor to screen chemicals for bioaccumulation potential. Environ Toxicol Chem 31(10):2261–2268

    Article  CAS  Google Scholar 

  46. Varol M, Sünbül MR (2018) Biomonitoring of trace metals in the Keban Dam Reservoir (Turkey) using mussels (Unio elongatulus eucirrus) and crayfish (Astacus leptodactylus). Biol Trace Elem Res 185(1):216–224

    Article  CAS  Google Scholar 

  47. Canpolat O, Eroglu M, Dusukcan M (2016) Transfer factor of some heavy metals in muscle of Cyprinus carpio. Fresenius Environ Bull 25(11):4988–4994

    CAS  Google Scholar 

  48. Commission Regulation (EU) No 420/2011 of 29 April 2011 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. https://www.fsai.ie/uploadedFiles/Reg420_2011.pdf. Accessed 9 March 2018

  49. Food and Agriculture Organization (FAO) Heavy metal regulations – Faolex. Legal Notice no. 66/2003. http://faolex.fao.org/docs/pdf/eri42405.pdf. Accessed 6 March 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Nędzarek.

Ethics declarations

Conflict of Interest

The author declares that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 878 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nędzarek, A., Czerniejewski, P. & Tórz, A. Macroelements and Trace Elements in Invasive Signal Crayfish (Pacifastacus leniusculus) from the Wieprza River (Southern Baltic): Human Health Implications. Biol Trace Elem Res 197, 304–315 (2020). https://doi.org/10.1007/s12011-019-01978-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01978-y

Keywords

Navigation