Skip to main content
Log in

Concentration-Dependent Effects of Zinc Sulfate on DU-145 Human Prostate Cancer Cell Line: Oxidative, Apoptotic, Inflammatory, and Morphological Analyzes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc takes part in several of cellular signaling pathways, containing defense against free radicals, apoptosis, and inflammation. However, interaction between zinc and prostate cancer progression is poorly understood. Therefore, zinc treatment in DU-145 human prostate cancer cells was investigated. First, zinc sulfate (ZnSO4) concentrations with antiproliferative effect were determined using MTT assay. Then, ZnSO4-induced oxidative damage was evaluated by malondialdehyde (MDA) levels, glutathione (GSH) levels, total oxidant status (TOS) levels, and total antioxidant status (TAS) levels. Apoptotic effects of ZnSO4 were determined by measuring biochemical and immunohistochemical parameters including caspase 3 (CASP3), cytochrome C (CYC), Bcl-2-associated X protein (Bax), and B cell CLL/lymphoma 2 (Bcl-2) levels. Inflammatory effects of ZnSO4 were investigated by measuring interleukin-6 (IL-6) levels and tumor necrosis factor-alpha (TNF-α) levels. Finally, morphological analysis was performed using hematoxylin-eosin staining. We found that ZnSO4 caused a concentration-dependent increase in oxidative stress, apoptosis, and inflammation pathways. Moreover, there were a number of morphological alterations in treated cells depending on the ZnSO4 concentration. Consequently, our data showed that zinc acts as a regulator of increased oxidative damage and apoptosis through the upregulation of TNF-α and IL-6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:359–386. https://doi.org/10.1002/ijc.29210

    Article  CAS  Google Scholar 

  2. Pernar CH, Ebot EM, Wilson KM, Mucci LA (2018) The epidemiology of prostate cancer. Cold Spring Harb Perspect Med 8:a030361. https://doi.org/10.1101/cshperspect.a030361

    Article  PubMed  PubMed Central  Google Scholar 

  3. Moul JW (2003) Variables in predicting survival based on treating “PSA-only” relapse. Urol Oncol 21:292–304. https://doi.org/10.1016/S1078-1439(03)00103-0

    Article  PubMed  Google Scholar 

  4. Costell LC, Franklin RB (1998) Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate 35:285–296. https://doi.org/10.1002/(SICI)1097-0045(19980601)35:4<285::AID-PROS8>3.0.CO;2-F

    Article  Google Scholar 

  5. Federico A, Iodice P, Federico P, Del Rio A, Mellone MC, Catalano G (2001) Effects of selenium and zinc supplementation on nutritional status in patients with cancer of digestive tract. Eur J Clin Nutr 55:293–297. https://doi.org/10.1038/sj.ejcn.1601157

    Article  CAS  PubMed  Google Scholar 

  6. Rohrmann S, Giovannucci E, Willett WC, Platz EA (2007) Fruit and vegetable consumption, intake of micronutrients, and benign prostatic hyperplasia in US men. Am J Clin Nutr 85:523–529. https://doi.org/10.1093/ajcn/85.2.523

    Article  CAS  PubMed  Google Scholar 

  7. Kristal AR, Arnold KB, Schenk JM, Neuhouser ML, Goodman P, Penson DF, Thompson IM (2008) Dietary patterns, supplement use, and the risk of symptomatic benign prostatic hyperplasia: results from the prostate cancer prevention trial. Am J Epidemiol 167:925–934. https://doi.org/10.1093/aje/kwm389

    Article  PubMed  Google Scholar 

  8. Costello LC, Franklin RB (2016) A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch Biochem Biophys 611:100–112. https://doi.org/10.1016/j.abb.2016.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Costello LC, Franklin RB, Feng P, Tan M, Bagasra O (2005) Zinc and prostate cancer: a critical scientific, medical, and public interest issue (United States). Cancer Causes Control 16:901–915. https://doi.org/10.1007/s10552-005-2367-y

    Article  PubMed  Google Scholar 

  10. Hong SH, Choi YS, Cho HJ, Lee JY, Kim JC, Hwang TK, Kim SW (2012) Antiproliferative effects of zinc-citrate compound on hormone refractory prostate cancer. Chin J Cancer Res 24:124–129. https://doi.org/10.1007/s11670-012-0124-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng P, Li TL, Guan ZX, Franklin RB, Costello LC (2003) Effect of zinc on prostatic tumorigenicity in nude mice. Ann N Y Acad Sci 1010:316–320. https://doi.org/10.1196/annals.1299.056

    Article  CAS  PubMed  Google Scholar 

  12. Reyes JG (1996) Zinc transport in mammalian cells. Am J Phys 270:401–410. https://doi.org/10.1152/ajpcell.1996.270.2.C401

    Article  Google Scholar 

  13. McCord MC, Aizenman E (2014) The role of intracellular zinc release in aging, oxidative stress, and Alzheimer's disease. Front Aging Neurosci 6:1–16. https://doi.org/10.3389/fnagi.2014.00077

    Article  CAS  Google Scholar 

  14. Liu RY, Fan C, Mitchell S, Chen Q, Wu J, Zuckerman KS (1998) The role of type I and type II tumor necrosis factor (TNF) receptors in the ability of TNF-alpha to transduce a proliferative signal in the human megakaryoblastic leukemic cell line Mo7e. Cancer Res 58:2217–2223

    CAS  PubMed  Google Scholar 

  15. Shintani Y, Fujiwara A, Kimura T, Kawamura T, Funaki S, Minami M, Okumura M (2016) IL-6 secreted from cancer-associated fibroblasts mediates chemoresistance in NSCLC by increasing epithelial-mesenchymal transition signaling. J Thorac Oncol 11:1482–1492. https://doi.org/10.1016/j.jtho.2016.05.025

    Article  PubMed  Google Scholar 

  16. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899. https://doi.org/10.1016/j.cell.2010.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tse BW, Scott KF, Russell PJ (2012) Paradoxical roles of tumour necrosis factor-alpha in prostate cancer biology. Prostate Cancer 2012:1–8. https://doi.org/10.1155/2012/128965

    Article  CAS  Google Scholar 

  18. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  20. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  21. Srivastava SK, Beutler E (1968) Accurate measurement of oxidized glutathione content of human, rabbit, and rat red blood cells and tissues. Anal Biochem 25:70–76. https://doi.org/10.1016/0003-2697(68)90082-1

    Article  CAS  PubMed  Google Scholar 

  22. Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc 2008:pdb.prot4986. https://doi.org/10.1101/pdb.prot4986

    Article  PubMed  Google Scholar 

  23. Ho E (2004) Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 15:572–578. https://doi.org/10.1016/j.jnutbio.2004.07.005

    Article  CAS  PubMed  Google Scholar 

  24. Provinciali M, Di Stefano G, Fabris N (1995) Dose-dependent opposite effect of zinc on apoptosis in mouse thymocytes. Int J Immunopharmacol 17:735–744. https://doi.org/10.1016/0192-0561(95)00063-8

    Article  CAS  PubMed  Google Scholar 

  25. Schrantz N, Auffredou MT, Bourgeade MF, Besnault L, Leca G, Vazquez A (2001) Zinc-mediated regulation of caspases activity: dose-dependent inhibition or activation of caspase-3 in the human Burkitt lymphoma B cells (Ramos). Cell Death Differ 8:152–161. https://doi.org/10.1038/sj.cdd.4400772

    Article  CAS  PubMed  Google Scholar 

  26. Wetherell D, Baldwin GS, Shulkes A, Bolton D, Ischia J, Patel O (2018) Zinc ion dyshomeostasis increases resistance of prostate cancer cells to oxidative stress via upregulation of HIF1α. Oncotarget 9:8463–8477. https://doi.org/10.18632/oncotarget.23893

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yan M, Hardin K, Ho E (2010) Differential response to zinc-induced apoptosis in benign prostate hyperplasia and prostate cancer cells. J Nutr Biochem 21:687–694. https://doi.org/10.1016/j.jnutbio.2009.04.002

    Article  CAS  PubMed  Google Scholar 

  28. Barzilai A, Rotman G, Shiloh Y (2002) ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair 22:3–25. https://doi.org/10.1016/S1568-7864(01)00007-6

    Article  Google Scholar 

  29. Naka K, Muraguchi T, Hoshii T, Hirao A (2008) Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid Redox Signal 10:1883–1894. https://doi.org/10.1089/ars.2008.2114

    Article  CAS  PubMed  Google Scholar 

  30. Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186. https://doi.org/10.1159/000047804

    Article  CAS  PubMed  Google Scholar 

  31. Minelli A, Bellezza I, Conte C, Culig Z (2009) Oxidative stress-related aging: a role for prostate cancer? Biochim Biophys Acta 1795:83–91. https://doi.org/10.1016/j.bbcan.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  32. Bouayed J, Bohn T (2010) Exogenous antioxidants—double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Med Cell Longev 3:228–237. https://doi.org/10.4161/oxim.3.4.12858

    Article  Google Scholar 

  33. Maret W (2013) Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr 4:82–91. https://doi.org/10.3945/an.112.003038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rudolf E, Rudolf K, Cervinka M (2005) Zinc induced apoptosis in HEP-2 cancer cells: the role of oxidative stress and mitochondria. Biofactors 23:107–120. https://doi.org/10.1002/biof.5520230206

    Article  CAS  PubMed  Google Scholar 

  35. Nagata S (2018) Apoptosis and clearance of apoptotic cells. Annu Rev Immunol 36:489–517. https://doi.org/10.1146/annurev-immunol-042617-053010

    Article  CAS  PubMed  Google Scholar 

  36. Elmore S (2007) Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59. https://doi.org/10.1038/nrm2308

    Article  CAS  PubMed  Google Scholar 

  38. Costello LC, Feng P, Milon B, Tan M, Franklin RB (2004) Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostatic Dis 7:111–117. https://doi.org/10.1038/sj.pcan.4500712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Michalaki V, Syrigos K, Charles P, Waxman J (2004) Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer 90:2312–2316. https://doi.org/10.1038/sj.bjc.6601814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muenchen HJ, Lin DL, Walsh MA, Keller ET, Pienta KJ (2000) Tumor necrosis factor-alpha-induced apoptosis in prostate cancer cells through inhibition of nuclear factor-kappaB by an IkappaBalpha “super-repressor”. Clin Cancer Res 6:1969–1977

    CAS  PubMed  Google Scholar 

  41. Giri D, Ozen M, Ittmann M (2001) Interleukin-6 is an autocrine growth factor in human prostate cancer. The Am J Pathol 159:2159–2165. https://doi.org/10.1016/S0002-9440(10)63067-2

    Article  CAS  PubMed  Google Scholar 

  42. Maolake A, Izumi K, Natsagdorj A, Iwamoto H, Kadomoto S, Makino T, Naito R, Shigehara K, Kadono Y, Hiratsuka K, Wufuer G, Nastiuk KL, Mizokami A (2018) Tumor necrosis factor-α induces prostate cancer cell migration in lymphatic metastasis through CCR7 upregulation. Cancer Sci 109:1524–1531. https://doi.org/10.1111/cas.13586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu L, Shi W, Deshmukh RR, Long J, Cheng X, Ji W, Zeng G, Chen X, Zhang Y, Dou QP (2014) Tumor necrosis factor-α sensitizes breast cancer cells to natural products with proteasome-inhibitory activity leading to apoptosis. PLoS One 9:e113783. https://doi.org/10.1371/journal.pone.0113783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ceyhan Hacioglu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacioglu, C., Kacar, S., Kar, F. et al. Concentration-Dependent Effects of Zinc Sulfate on DU-145 Human Prostate Cancer Cell Line: Oxidative, Apoptotic, Inflammatory, and Morphological Analyzes. Biol Trace Elem Res 195, 436–444 (2020). https://doi.org/10.1007/s12011-019-01879-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01879-0

Keywords

Navigation