Skip to main content
Log in

The Activation of Heat-Shock Protein After Copper(II) and/or Arsenic(III)-Induced Imbalance of Homeostasis, Inflammatory Response in Chicken Rectum

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Arsenic and copper, two toxic pollutants, are powerful inducers of oxidative stress. Exposure to copper and arsenic can cause intestinal injury in cockerel. This study was carried out to investigate the effects of these two pollutants on the gastrointestinal tract of cockerels. Experimental results showed that the activity of antioxidant enzymes (catalase and glutathione peroxidase) was inhibited and the ionic balance was destroyed after exposure to copper sulfate (300 mg/kg) and/or arsenic trioxide (30 mg/kg). However, the expression of pro-inflammatory cytokines (nuclear factor kappa-B, cyclooxygenase-2, tumor necrosis factor-α, and prostaglandin E2 synthases) increased markedly. Damages to the biofilm structure and inflammatory cell infiltration were simultaneously observed during histological examination. Heat-shock proteins were also expressed in large quantities after exposure to the poisons. Collectively, exposure to arsenite and/or Cu2+ can cause rectal damage in cockerels, inducing inflammation and an imbalance in immune system responses. Sometimes, exposure to both pollutants can produce even more toxic effects. Heat-shock proteins can protect the tissue from the exotoxins but the specific mechanisms require exploration. After oral ingestion of toxins, the rectum can still be damaged, necessitating attention to the safety of poultry breeding, human food safety, and environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Upadhyay MK, Shukla A, Yadav P, Srivastava S (2019) A review of arsenic in crops, vegetables, animals and food products. Food Chem 276:608–618

    CAS  PubMed  Google Scholar 

  2. Brahman KD, Kazi TG, Baig JA, Afridi HI, Khan A, Arain SS, Arain MB (2014) Fluoride and arsenic exposure through water and grain crops in Nagarparkar, Pakistan. Chemosphere 100:182–189

    CAS  PubMed  Google Scholar 

  3. Young RA (1990) Stress proteins and immunology. Annu Rev Immunol 8:401–420

    CAS  PubMed  Google Scholar 

  4. Zhao H, Wang Y, Shao Y, Liu J, Wang S, Xing M (2018) Oxidative stress-induced skeletal muscle injury involves in NF-kappaB/p53-activated immunosuppression and apoptosis response in copper (II) or/and arsenite-exposed chicken. Chemosphere 210:76–84

    CAS  PubMed  Google Scholar 

  5. Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ (2001) Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Health B Crit Rev 4:341–394

    CAS  PubMed  Google Scholar 

  6. Cakic M, Mitic Z, Nikolic G, Savic I, Savic IM (2013) Design and optimization of drugs used to treat copper deficiency. Expert Opin Drug Discov 8:1253–1263

    CAS  PubMed  Google Scholar 

  7. Garza-Lombo C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R (2018) Neurotoxicity linked to dysfunctional metal ion homeostasis and xenobiotic metal exposure: redox signaling and oxidative stress. Antioxid Redox Signal 28:1669–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Y, Zhao H, Guo M, Shao Y, Xing M (2018) Arsenite renal apoptotic effects in chicken is co-aggravated by oxidative stress and inflammatory. Metallomics 10

  9. Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 29:1106–1114

    CAS  PubMed  Google Scholar 

  10. Zhao H, He Y, Li S, Sun X, Wang Y, Shao Y, Hou Z et al (2017) Subchronic arsenism-induced oxidative stress and inflammatory contribute to apoptosis through mitochondrial and death receptor dependent pathways in chicken immune organs. Oncotarget 8:40327–40344

    PubMed  PubMed Central  Google Scholar 

  11. Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288

    CAS  PubMed  Google Scholar 

  12. Cervantes C, Ji G, Ramirez JL, Silver S (1994) Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev 15:355–367

    CAS  PubMed  Google Scholar 

  13. Chu BX, Fan RF, Lin SQ, Yang DB, Wang ZY, Wang L (2018) Interplay between autophagy and apoptosis in lead (II)-induced cytotoxicity of primary rat proximal tubular cells. J Inorg Biochem 182:184–193

    CAS  PubMed  Google Scholar 

  14. Liu F, Wang XY, Zhou XP, Liu ZP, Song XB, Wang ZY, Wang L (2017) Cadmium disrupts autophagic flux by inhibiting cytosolic Ca2+-dependent autophagosome-lysosome fusion in primary rat proximal tubular cells. Toxicology 383:13–23

    CAS  PubMed  Google Scholar 

  15. Wang Y, Zhao H, Liu J, Shao Y, Li J, Luo L, Xing M (2018) Copper and arsenic-induced oxidative stress and immune imbalance are associated with activation of heat shock proteins in chicken intestines. Int Immunopharmacol 60:64–75

    CAS  PubMed  Google Scholar 

  16. Wang Y, Wang K, Huang H, Gu X, Teng X (2017) Alleviative effect of selenium on inflammatory damage caused by lead via inhibiting inflammatory factors and heat shock proteins in chicken testes. Environ Sci Pollut Res Int 24:13405–13413

    CAS  PubMed  Google Scholar 

  17. Pardee AB (1966) Enzyme & metabolic inhibitors, Vols II & III by J Leyden Webb Am Sci : 488A

  18. Pelham HR (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46:959–961

    CAS  PubMed  Google Scholar 

  19. Rothman JE (1989) Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 59:591–601

    CAS  PubMed  Google Scholar 

  20. Shao Y, Zhao H, Wang Y, Liu J, Li J, Chai H, Xing M (2018) Arsenic and/or copper caused inflammatory response via activation of inducible nitric oxide synthase pathway and triggered heat shock protein responses in testis tissues of chicken. Environ Sci Pollut Res Int 25:7719–7729

    CAS  PubMed  Google Scholar 

  21. Liu L, Fu C, Yan M, Xie H, Li S, Yu Q, He S, He J (2016) Resveratrol modulates intestinal morphology and HSP70/90, NF-kappaB and EGF expression in the jejunal mucosa of black-boned chickens on exposure to circular heat stress. Food Funct 7:1329–1338

    CAS  PubMed  Google Scholar 

  22. Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168

    CAS  PubMed  Google Scholar 

  23. Sun X, Li J, Zhao H, Wang Y, Liu J, Shao Y, Xue Y et al (2018) Synergistic effect of copper and arsenic upon oxidative stress, inflammation and autophagy alterations in brain tissues of Gallus gallus. J Inorg Biochem 178:54–62

    CAS  PubMed  Google Scholar 

  24. Li S, Zhao H, Wang Y, Shao Y, Wang B, Wang Y, Xing M (2018) Regulation of autophagy factors by oxidative stress and cardiac enzymes imbalance during arsenic or/and copper induced cardiotoxicity in Gallus gallus. Ecotoxicol Environ Saf 148:125–134

    CAS  PubMed  Google Scholar 

  25. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121:295–302

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fage SW, Faurschou A, Thyssen JP (2014) Copper hypersensitivity. Contact Dermatitis 71:191–201

    CAS  PubMed  Google Scholar 

  27. Gomez G, Baos R, Gomara B, Jimenez B, Benito V, Montoro R, Hiraldo F et al (2004) Influence of a mine tailing accident near Donana National Park (Spain) on heavy metals and arsenic accumulation in 14 species of waterfowl (1998 to 2000). Arch Environ Contam Toxicol 47:521–529

    CAS  PubMed  Google Scholar 

  28. Burger J (2013) Temporal trends (1989-2011) in levels of mercury and other heavy metals in feathers of fledgling great egrets nesting in Barnegat Bay, NJ. Environ Res 122:11–17

    CAS  PubMed  Google Scholar 

  29. Lo JC, Letinski DJ, Parkerton TF, Campbell DA, Gobas FA (2016) In vivo biotransformation rates of organic chemicals in fish: relationship with bioconcentration and biomagnification factors. Environ Sci Technol 50:13299–13308

    CAS  PubMed  Google Scholar 

  30. Olsen RE, Sundell K, Mayhew TM, Myklebust R, Ringø E (2005) Acute stress alters intestinal function of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture 250:480–495

    CAS  Google Scholar 

  31. Rao SV, Prakash B, Kumari K, Raju MV, Panda AK (2013) Effect of supplementing different concentrations of organic trace minerals on performance, antioxidant activity, and bone mineralization in Vanaraja chickens developed for free range farming. Trop Anim Health Prod 45:1447–1451

    PubMed  Google Scholar 

  32. Lin CC, Huang HH, Hu CW, Chen BH, Chong IW, Chao YY, Huang YL (2014) Trace elements, oxidative stress and glycemic control in young people with type 1 diabetes mellitus. J Trace Elem Med Biol 28:18–22

    PubMed  Google Scholar 

  33. Sun L, Yu Y, Huang T, An P, Yu D, Yu Z, Li H, Sheng H, Cai L, Xue J, Jing M, Li Y, Lin X, Wang F (2012) Associations between ionomic profile and metabolic abnormalities in human population. PLoS One 7:e38845

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Torres MA, Barros MP, Campos SC, Pinto E, Rajamani S, Sayre RT, Colepicolo P (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71:1–15

    CAS  PubMed  Google Scholar 

  35. Lin J, Li HX, Qin L, Du ZH, Xia J, Li JL (2016) A novel mechanism underlies atrazine toxicity in quails (Coturnix Coturnix coturnix): triggering ionic disorder via disruption of ATPases. Oncotarget 7:83880–83892

    PubMed  PubMed Central  Google Scholar 

  36. Al-Waeli A, Pappas AC, Zoidis E, Georgiou CA, Fegeros K, Zervas G (2012) The role of selenium in cadmium toxicity: interactions with essential and toxic elements. Br Poult Sci 53:817–827

    CAS  PubMed  Google Scholar 

  37. Wang Y, Zhao H, Shao Y, Liu J, Li J, Luo L, Xing M (2018) Copper (II) and/or arsenite-induced oxidative stress cascades apoptosis and autophagy in the skeletal muscles of chicken. Chemosphere 206:597–605

    CAS  PubMed  Google Scholar 

  38. Yavuz Y, Yüksel M, Yeěn BÇ, Alican İ (1999) The effect of antioxidant therapy on colonic inflammation in the rat. Res Exp Med (Berl) 199:101–110

  39. Yin Y, Meng F, Sui C, Jiang Y, Zhang L (2018) Arsenic enhances cell death and DNA damage induced by ultraviolet B exposure in mouse epidermal cells through the production of reactive oxygen species. Clin Exp Dermatol

  40. Zhao H, Wang Y, Fei D, Guo M, Yang X, Mu M, Yu H, Xing M (2019) Destruction of redox and mitochondrial dynamics co-contributes to programmed cell death in chicken kidney under arsenite or/and copper (II) exposure. Ecotox Environ Safe

  41. Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650

    CAS  PubMed  Google Scholar 

  42. Ahmad S, Kitchin KT, Cullen WR (2000) Arsenic species that cause release of iron from ferritin and generation of activated oxygen. Arch Biochem Biophys 382:195–202

    CAS  PubMed  Google Scholar 

  43. Gong ZG, Wang XY, Wang JH, Fan RF, Wang L (2019) Trehalose prevents cadmium-induced hepatotoxicity by blocking Nrf2 pathway, restoring autophagy and inhibiting apoptosis. J Inorg Biochem 192:62–71

    CAS  PubMed  Google Scholar 

  44. Pereira TC, Campos MM, Bogo MR (2016) Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model. J Appl Toxicol 36:876–885

    CAS  PubMed  Google Scholar 

  45. Ma J, Liu Y, Niu D, Li X (2015) Effects of chlorpyrifos on the transcription of CYP3A cDNA, activity of acetylcholinesterase, and oxidative stress response of goldfish (Carassius auratus). Environ Toxicol 30:422–429

    CAS  PubMed  Google Scholar 

  46. Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666

    CAS  PubMed  Google Scholar 

  47. Chuian-Fu K, Tung-Ming H, Zong-Xian H, Rong-Huay J, Chi-Tsai L (2005) Characterization of Fe/Mn-superoxide dismutase from diatom Thallassiosira weissflogii: cloning, expression, and property. J Agric Food Chem 53:1470–1474

    Google Scholar 

  48. Zhang Z, Zheng Z, Cai J, Liu Q, Yang J, Gong Y, Wu M, Shen Q, Xu S (2017) Effect of cadmium on oxidative stress and immune function of common carp (Cyprinus carpio L.) by transcriptome analysis. Aquat Toxicol 192:171–177

    CAS  PubMed  Google Scholar 

  49. Liu Y, Wang J, Wei Y, Zhang H, Xu M, Dai J (2008) Induction of time-dependent oxidative stress and related transcriptional effects of perfluorododecanoic acid in zebrafish liver. Aquat Toxicol 89:242–250

    CAS  PubMed  Google Scholar 

  50. Bisceglie F, Alinovi R, Pinelli S, Galetti M, Pioli M, Tarasconi P, Mutti A, Goldoni M, Pelosi G (2016) Autophagy and apoptosis: studies on the effects of bisthiosemicarbazone copper (ii) complexes on p53 and p53-null tumour cell lines. Metallomics 8:1255–1265

    CAS  PubMed  Google Scholar 

  51. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 480-481:243–268

    CAS  PubMed  Google Scholar 

  52. Nagy G, Clark JM, Buzas EI, Gorman CL, Cope AP (2007) Nitric oxide, chronic inflammation and autoimmunity. Immunol Lett 111:1–5

    CAS  PubMed  Google Scholar 

  53. Yokozeki H, Wu MH, Sumi K, Igawa K, Miyazaki Y, Katayama I, Takeda K et al (2003) Th2 cytokines, IgE and mast cells play a crucial role in the induction of para-phenylenediamine-induced contact hypersensitivity in mice. Clin Exp Immunol 132:385–392

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lund H, Bakke AF, Sommerset I, Afanasyev S, Schriwer G, Thorisdottir A, Boysen P et al (2018) A time-course study of gene expression and antibody repertoire at early time post vaccination of Atlantic salmon. Mol Immunol 106:99–107

    PubMed  Google Scholar 

  55. Da SM, de Almeida VL, de Oliveira WD, Matos CN, de Oliveira PG, Da SC, Da SA et al (2018) Upregulation of cardiac IL-10 and downregulation of IFN-gamma in Balb/c IL-4(−/−) in acute chagasic myocarditis due to Colombian strain of Trypanosoma cruzi. Mediat Inflamm 2018:3421897

    Google Scholar 

  56. Sun Z, Xu Z, Wang D, Yao H, Li S (2018) Selenium deficiency inhibits differentiation and immune function and imbalances the Th1/Th2 of dendritic cells. Metallomics 10:759–767

    CAS  PubMed  Google Scholar 

  57. Wang F, Qiao L, Chen L, Zhang C, Wang Y, Wang Y, Liu Y, Zhang N (2016) The immunomodulatory activities of pullulan and its derivatives in human pDC-like CAL-1 cell line. Int J Biol Macromol 86:764–771

    CAS  PubMed  Google Scholar 

  58. Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86:377–384

    CAS  PubMed  Google Scholar 

  59. Guo Y, Zhao P, Guo G, Hu Z, Tian L, Zhang K, Sun Y, Zhang X, Zhang W, Xing M (2016) Effects of arsenic trioxide exposure on heat shock protein response in the immune organs of chickens. Biol Trace Elem Res 169:134–141

    CAS  PubMed  Google Scholar 

  60. Zhao P, Zhang K, Guo G, Sun X, Chai H, Zhang W, Xing M (2016) Heat shock protein alteration in the gastrointestinal tract tissues of chickens exposed to arsenic trioxide. Biol Trace Elem Res 170:224–236

    CAS  PubMed  Google Scholar 

  61. Kraemer LD, Campbell PG, Hare L (2005) Dynamics of Cd, Cu and Zn accumulation in organs and sub-cellular fractions in field transplanted juvenile yellow perch (Perca flavescens). Environ Pollut 138:324–337

    CAS  PubMed  Google Scholar 

  62. Zhao G, Liu G (2018) Electrochemical deposition of gold nanoparticles on reduced graphene oxide by fast scan cyclic voltammetry for the sensitive determination of as (III). Nanomaterials (Basel) 9

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 31672619), the Fundamental Research Funds for the Central Universities (Grant No. 2572016EAJ5), and the National Key Research and Development Program of China (Grant No. 2017YFD0501702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingwei Xing.

Ethics declarations

All procedures used in this study were approved by the Institutional Animal Care and Use Committee of Northeast Forestry University (Harbin, China) (approval no. UT-31; 20 June 2014).

Conflict of Interest

The authors declare that there are no conflicts to interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhao, H., Wang, Y. et al. The Activation of Heat-Shock Protein After Copper(II) and/or Arsenic(III)-Induced Imbalance of Homeostasis, Inflammatory Response in Chicken Rectum. Biol Trace Elem Res 195, 613–623 (2020). https://doi.org/10.1007/s12011-019-01871-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01871-8

Keywords

Navigation