Skip to main content
Log in

Nano-particles of Trace Minerals in Poultry Nutrition: Potential Applications and Future Prospects

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nano-technology is an emerging technology with tremendous potential and diverse applications in human health, agriculture, and animal nutrition. It also offers potential advantages in supporting research in many areas of life sciences. Nano-technology has many vital biological applications as living systems depend on many nano-scale objects like proteins, DNA, and enzymes. Trace minerals are normally used in very minute quantity in animal nutrition but issues like lower bioavailability, antagonism, and higher excretion rates from body limit their efficiency. Nano-technology offers opportunity to mediate these issues as nano-particles possess different physical and chemical properties than other forms of minerals. Nano-particles possess higher physical activity and chemical neutrality. Bioavailability can be enhanced by increasing the surface area of respective minerals by making their nano-particles. Owing to potential advantages of nano-particles, interest in exploring their potential use and efficacy in animal production has increased significantly in this decade. Although limited literature is available regarding potential effects of nano-particles in poultry nutrition, still some convincing evidences have suggested the feeding of trace minerals (zinc, copper, silver, selenium, iron, chromium, and manganese) in the diets of broilers, layers, turkeys, quails, etc. Excellent antimicrobial activities of nano-particles of Ag, Cu, and Zn, against key poultry pathogens like Salmonella and Campylobacter, indicate their potential for effective use in poultry production. Recent studies have also demonstrated modulation of gut health by nano-particle through increasing abundance of beneficial microbes (Lactobacillus and Faecalibacterium) and production of short-chain fatty acids. This review aims to provide insights on absorption, metabolism, and distribution of nano-minerals in the body. Moreover, potential applications and various aspects of using nano-trace minerals in different poultry species with potential effects on performance and health of birds are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hulla JE, Sahu SC, Hayes AW (2015) Nanotechnology: history and future. Hum Exp Toxicol 34:1318–1321

    CAS  PubMed  Google Scholar 

  2. Albrecht MA, Evans WC, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432

    CAS  Google Scholar 

  3. Rajendran D, Thulasi A, Jash S, Selvaraju S, Rao SBN (2013) Synthesis and application of nano minerals in livestock industry. Anim Nutr Reproduc Physiol:517–530

  4. Usama TM (2012) Silver nanoparticles in poultry production. J Adv Vet Res 2:303–306

    Google Scholar 

  5. Otles S, Yalcin B (2008) Smart food packaging. Elektroniczne czasopismo naukowe z dziedziny logistyki 4:1–7

    Google Scholar 

  6. Gopi MB, Kumar RD, Shanmathy M, Prabakar G (2017) Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. Int J Pharm 13:724–731

    CAS  Google Scholar 

  7. Ahmadi F, Kurdestani AH (2010) The impact of silver nano particles on growth performance, lymphoid organs and oxidative stress indicators in broiler chicks. Global Veterinaria 5:366–370

    CAS  Google Scholar 

  8. Felehgari KF, Ahmadi, Ardashir AR, Kurdestany H, Khah MM (2013) The effect of dietary silver nanoparticles and inorganic selenium supplementation on performance and digestive organs of broilers during starter period. Bulle Environ Pharmacol Sci 2:104–108

    Google Scholar 

  9. Vadalasetty, KPC L, Engberg RM, Vadalasetty R, Kutwin M, Chwalibog A, Sawosz E (2018) Influence of silver nanoparticles on growth and health of broiler chickens after infection with Campylobacter jejuni. Bio Med Central Vet Res 14:1–11

    Google Scholar 

  10. Zhao CYS, Tan X, Xiao X, Qi J, Pan J, Tang Z (2014) Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol Trace Elem Res 160:361–367

    CAS  PubMed  Google Scholar 

  11. Fathi M (2016) Effects of zinc oxide nanoparticles supplementation on mortality due to ascites and performance growth in broiler chickens. Ira J Appl Anim Sci 6:389–394

    CAS  Google Scholar 

  12. Wang C, Wang MQ, Ye SS, Tao WJ, Du YJ (2011) Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poult Sci 90:2223–2228

    CAS  PubMed  Google Scholar 

  13. Joshua PP, Valli C, Balakrishnan V (2016) Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken. Vet World 9:287–294

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ognik K, Stepniowska A, Cholewinska E, Kozlowski K (2016) The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poult Sci 95:2045–2051

    CAS  PubMed  Google Scholar 

  15. Mohammadi H, Farzinpour A, Vaziry A (2016) Reproductive performance of breeder quails fed diets supplemented with L-cysteine-coated iron oxide nanoparticles. Reprod Domest Anim 2017:1–7

    Google Scholar 

  16. Saki AA, Abbasinezhad RAA (2014) Iron nanoparticles and methionine hydroxy analogue chelate in ovo feeding of broiler chickens. Int J Nanosci Nanotechnol 10:187–196

    Google Scholar 

  17. Zhou X, Wang Y (2011) Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poult Sci 90:680–686

    CAS  PubMed  Google Scholar 

  18. Thulasi A, Rajendran D, Jash S, Selvaraju S, Jose VL, Velusamy S, Mathivanan S (2013) Animal nutrition and reproductive physiology (recent concepts). In: Nanobiotechnology in animal nutrition, 1st. edn. Satish Serial Publishing House, Delhi

  19. Surai PF, Kochish II, Velichko OA (2017) Nano-Se assimilation and action in poultry and other monogastric animals: is gut microbiota an answer? Nanoscale Res Lett 12:612

    PubMed  PubMed Central  Google Scholar 

  20. Geraet L, Oomen AG, Krystek P, Jacobsen NR, Wallin H, Laurentie, Verharen HW, Brandon EFA, Jong WH (2014) Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol 11:1–21

    Google Scholar 

  21. Choi S, Choy J (2014) Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction. Int J Nanomedicine 9(2):261–269

    PubMed  PubMed Central  Google Scholar 

  22. Lansdown ABG (2010) A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv Pharmacol Sci 2010:16

    Google Scholar 

  23. Zhu M, Feng W, Wang Y, Wang B, Wang M, Ouyang H, Zhao Y, Chai Z (2009) Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci 107:342–351

    CAS  PubMed  Google Scholar 

  24. Mohammadi V, Ghazanfari S, Mohammadi-Sangcheshmeh A, Nazaran MH (2015b) Comparative effects of zinc-nano complexes, zinc-sulphate and zinc methionine on performance in broiler chickens. Br Poult Sci 56:486–493

    CAS  PubMed  Google Scholar 

  25. Aparna N, Karunakaran R (2016) Effect of selenium nanoparticles supplementation on oxidation resistance of broiler chicken. Indian J Sci Technol 9:1–5

    CAS  Google Scholar 

  26. Sizova E, Yausheva E, Kosyan D, Miroshnikov S (2015) Growth enhancement by intramuscular injection of elemental iron nano- and microparticles. Mod Appl Sci 9:17–26

    CAS  Google Scholar 

  27. King JC (2011) Zinc: an essential but elusive nutrient. Am J Clin Nutr 94(suppl):679–684

  28. Pandav PV, Puranik PR (2015) Trials on metal enriched spirulina platensis supplementation on poultry growth. Glob J Biosci Biotechnol 4:128–134

    Google Scholar 

  29. Kechrid Z, Bouzerna N (2004) Effect of zinc deficiency on zinc and carbohydrate metabolism in genetically diabetic (c57bl/ksj db+/db+) and non-diabetic original strain (c57bl/ksj) mice. Turk J Med Sci 34:367–373

    CAS  Google Scholar 

  30. Khalid NA, Ahmed, Bhatti MS, Randhawa MA, Ahmad A, Rafaqat R (2014) A question mark on zinc deficiency in 185 million people in Pakistan—possible way out. Crit Rev Food Sci Nutr 54:1222–1240

    CAS  PubMed  Google Scholar 

  31. Saenmahayak B (2007) Complexed trace mineral supplementation of broiler diets. MS thesis, Auburn University, AL, USA

  32. Kidd MT, Ferket PR, Qureshi MA (1996) Zinc metabolism with special reference to its role in immunity. World Poult Sci J 52:309–323

    Google Scholar 

  33. Fawaz MA, Südekum KH, Hassan HA, Abdel-Wareth AAA (2019) Effects of nanoparticles of zinc oxide on productive performance of laying hens – a review. Intl J Agric Sci 1(1):13–20

    Google Scholar 

  34. Swain PS, Rao SBN, Rajendran D, Dominic G, Selvaraju S (2016) Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Anim Nutr 2:134–141

    PubMed  PubMed Central  Google Scholar 

  35. Mohan P, Mala R (2019) A review on the effect of ZNO nanomaterial as supplement in poultry farming. AIP Conference Proceedings 020030 (2019); https://doi.org/10.1063/1.5100715

  36. Duffy LL, Osmond-McLeod MJ, Judy J, King T (2018) Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control 92:293–300

    CAS  Google Scholar 

  37. Qi-you X, Li-bo L, Feng-yu H, Jia-lan W, Zhen-guo D, Hui-ju B, An-shan S (2007) Effects of nanometer zinc oxide on the biochemical index of broilers. Chin J Anim Nutr:2007–2001

  38. Lina T, Jianyang J, Fenghua Z, Huiying R, Wenli L (2009a) Effects of nano-zinc oxide on the production and dressing performance of broiler. Chin Agric Sci Bull:2009–2002

  39. Mishra A, Swain RK, Mishra SK, Panda N, Sethy K (2014) Growth performance and serum biochemical parameters as affected by nano zinc supplementation in layer chicks. Indian J Anim Nutr 31(4):384–388

    Google Scholar 

  40. Selim NA, Refaie, Amira M, Abeer R, Khosht, El-Hakim A (2014) Effect of sources and inclusion levels of zinc in broilers diet containing vegetable oils during summer season conditions on meat quality. Int J Poult Sci 13(11):619–626

    CAS  Google Scholar 

  41. Lina T, Hua ZF, Ying RH, Yang JJ, WenLi L (2016) Effects of nano-zinc oxide on antioxidant function in broilers. Chin J Anim Nutr 21:534–539

    Google Scholar 

  42. Tsai YH, Mao SY, Li MZ, Huang JT, Lien TF (2016) Effects of nanosize zinc oxide on zinc retention, eggshell quality, immune response and serum parameters of aged laying hens. Anim Feed Sci Technol. https://doi.org/10.1016/j.anifeedsci.2016.01.009

  43. Olgun O, Yildiz AO (2017) Effects of dietary supplementation of inorganic, organic or nano zinc forms on performance, eggshell quality, and bone characteristics in laying hens. Ann Anim Sci 17(2):463–476

    CAS  Google Scholar 

  44. Mao S, Lien T (2017) Effects of nanosized zinc oxide and γ-polyglutamic acid on eggshell quality and serum parameters of aged laying hens. Arch Anim Nutr 71(5):373–383. https://doi.org/10.1080/1745039X.2017.1355600

    Article  CAS  PubMed  Google Scholar 

  45. Abbasi M, Dastar B, Afzali N, Shargh SM, Hashemi SR (2017) Zinc requirements of Japanese quails (Coturnix coturnix japonica) by assessing dose-evaluating response of zinc oxide nano-particle supplementation. Poult Sci J 5(2):131–143

    Google Scholar 

  46. El-Katcha M, Soltan MA, El-badry M (2017) Effect of dietary replacement of inorganic zinc by organic or nanoparticles sources on growth performance, immune response and intestinal histopathology of broiler chicken. Alexandria J Vet Sci 55(2):129–145

    Google Scholar 

  47. Abedini M, Shariatmadari F, Torshizi MAK, Ahmadi H (2018) Effects of zinc oxide nanoparticles on the egg quality, immune response, zinc retention, and blood parameters of laying hens in the late phase of production. J Anim Physiol Anim Nutr:1–10

  48. Asheer M, Manwar SJ, Gole MA, Sirsat S, Wade MR, Khose KK, Ali SS (2018) Effect of dietary nano zinc oxide supplementation on performance and zinc bioavailability in broilers. Ind J Poult Sci 53(1):70–75

    Google Scholar 

  49. Bami MK, Afsharmanesh M, Salarmoini M, Tavakoli H (2018) Effect of zinc oxide nanoparticles and bacillus coagulans as probiotic on growth, histo morphology of intestine, and immune parameters in broiler chickens. Comp Clin Pathol 27(2):399–406

    Google Scholar 

  50. Jozwik A, Marchewka J, Strzałkowska N, Horbanczuk JO, Strabel MS, Cieslak A, Palka PL, Jopzefiak D, Kaminska A, Atanasov AG (2018) The effect of different levels of Cu, Zn and Mn nanoparticles in hen Turkey diet on the activity of aminopeptidases. Molecules 23:1150. https://doi.org/10.3390/molecules23051150

    Article  CAS  PubMed Central  Google Scholar 

  51. Sagar PD, Mandal AB, Akbar N, Dinani OP (2018) Effect of different levels and sources of zinc on growth performance and immunity of broiler chicken during summer. Int J Curr Microbiol App Sci 7(5):459–471

    Google Scholar 

  52. Hafez A, Nassef E, Fahmy M, Elsabagh M, Bakr A, Hegazi E (2019) Impact of dietary nano-zinc oxide on immune response and antioxidant defense of broiler chickens. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-04344-6

  53. Ramiah SK, Awad EA, Mookiah S, Idrus Z (2019) Effects of zinc oxide nanoparticles on growth performance and concentrations of malondialdehyde, zinc in tissues, and corticosterone in broiler chickens under heat stress conditions. Poult Sci 0:1–11

    Google Scholar 

  54. Mohammadi F, Ahmadi F, Andi MA (2015a) Effect of zinc oxide nanoparticles on carcass parameters, relative weight of digestive and lymphoid organs of broiler fed wet diet during the starter period. Int J Biosci 6:389–394

    Google Scholar 

  55. Lina T, Fenghua Z, Huiying R, Jianyang J, Wenli L (2009b) Effects of nano-zinc oxide on antioxidant function in broilers. Chin J Anim Nutr 21(4):534–539

    Google Scholar 

  56. Ibrahim D, Ali HA, El-Mandrawy SAM (2017) Effects of different zinc sources on performance, bio distribution of minerals and expression of genes related to metabolism of broiler chickens. Zagazig Vet J 45(3):292–304

    Google Scholar 

  57. Lin W, Xu Y, Huang C, Ma Y, Shannon KB, Chen D (2009) Toxicity of nano- and microsized ZnO particles in human lung epithelial cells. J Nanopart Res 11:25–39

    CAS  Google Scholar 

  58. Chen Z, Meng H, Xing G, Chen C, Zhao Y (2007) Toxicological and biological effects of nanomaterials. Int J Nanotechnol 4:179–196

    CAS  Google Scholar 

  59. Kool PL, Ortiz MD, Gestel CA (2011) Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia Candida (Collembola) in relation to bioavailability in soil. Environ Pollut 159:2713–2719

    CAS  PubMed  Google Scholar 

  60. Hooper HL, Jurkschat K, Morgan AJ, Bailey J, Lawlor AJ, Spurgeon DJ (2011) Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environ Int 37:1111–1117

    CAS  PubMed  Google Scholar 

  61. Chang C (2010) The immune effects of naturally occurring and synthetic nanoparticles. J Autoimmun 34:234–246

    CAS  Google Scholar 

  62. McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–127

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu Y, Tang H, Liu JH, Wang H, Liu Y (2013) Evaluation of the adjuvant effect of silver nanoparticles both in vitro and in vivo. Toxicol Lett 219:42–48

    CAS  PubMed  Google Scholar 

  64. Grodzik M, Sawosz E (2006) The influence of silver nano particles on chicken embryo development and bursa of fabricius morphology. J Anim Feed Sci 15(suppl 1):111–114

    Google Scholar 

  65. Sawosz E, Binek M, Grodzik M, Zielinska M, Sysa P, Szmidt M, Niemiec T, Chwalibog A (2007) Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch Anim Nutr 61(6):444–451. https://doi.org/10.1080/17450390701664314

    Article  CAS  PubMed  Google Scholar 

  66. Sawosz E, Grodzik M, Zieliska M, Niemiec T, Olszaska B, Chwalibog A (2009) Nanoparticles of silver do not affect growth, development and DNA oxidative damage in chicken embryos. Arch Geflugelk 73(3):208–213

    CAS  Google Scholar 

  67. Pineda L, Chwalibog A, Sawosz E, Hotowy A, Elnif J, Sawosz F (2012a) Investigating the effect of in ovo injection of silver nanoparticles on fat uptake and development in broiler and layer hatchlings. J Nanotechno 2012(212486):7

    Google Scholar 

  68. Pineda L, Sawosz E, Hotowy A, Elnif J, Sawosz F, Ali A, Chwalibog A (2012b) Effect of nanoparticles of silver and gold on metabolic rate and development of broiler and layer embryos. Comp Biochem Physiol 161:315–319

    CAS  Google Scholar 

  69. Sawosz F, Pineda L, Hotowy A, Jaworski S, Prasek M, Sawosz E, Chwalibog A (2013) Nano-nutrition of chicken embryos. The effect of silver nanoparticles and ATP on expression of chosen genes involved in myogenesis. Arch Anim Nutr 67:347–355. https://doi.org/10.1080/1745039X.2013.830520

    Article  CAS  PubMed  Google Scholar 

  70. Bhanja SK, Hotowy A, Mehra M, Sawosz E, Pineda L, Vadalasetty KP, Kurantowicz N, Chwalibog A (2015) In ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos. Int J Mol Sci 16:9484–9503

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Elkloub K, Moustafa ME, Ghazalah AA, Rehan AAA (2015) Effect of dietary nanosilver on broiler performance. Int J Poult Sci 14:177–182

    CAS  Google Scholar 

  72. Ognik K, Cholewinska E, Czech A, Kozłowski K, Wlazlo L, Nowakowicz-Dębek B, Szlazak R, Tutaj K (2015) Effect of silver nanoparticles on the immune, redox, and lipid status of chicken blood. Czech J Anim Sci 61:450–461

    Google Scholar 

  73. Kulak E, Ognik K, Stepniowska A, Sembratowicz I (2018) The effect of administration of silver nanoparticles on silver accumulation in tissues and immune and antioxidant status of chickens. J Anim Feed Sci 27:44–54

    Google Scholar 

  74. Sarkar B, Bhattacharjee S, Daware A, Tribedi P, Krishnani KK, Minhas PS (2015) Selenium nanoparticles for stress-resilient fish and livestock. Nanoscale Res, Let

    Google Scholar 

  75. Back TG (2013) Investigations of new types of glutathione peroxidase mimetics. Biochalcogen Chem: the biological chemistry of sulfur, selenium and tellurium. Chapter 7 ACS Symposium Series 1152:143–162

    CAS  Google Scholar 

  76. Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64:527–542

    CAS  PubMed  Google Scholar 

  77. Peng D, Zhang J, Liu Q, Taylor EW (2007) Size effect of elemental selenium nanoparticles (nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J Inorg Biochem 101:1457–1463

    CAS  PubMed  Google Scholar 

  78. Cai SJC, Wu X, Gong LM, Song T, Wu H, Zhang LY (2012) Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult Sci 91:2532–2539

    CAS  PubMed  Google Scholar 

  79. Saleh AA (2014) Effect of dietary mixture of Aspergillus probiotic and selenium nano-particles on growth, nutrient digestibilities, selected blood parameters and muscle fatty acid profile in broiler chickens. Anim Sci Paper Rep 32(1):65–79

    CAS  Google Scholar 

  80. Gulyas G, Csosz E, Prokisch J, Javor A, Mezes M, Erdelyi M, Balogh K, Janaky T, Szabo Z, Simon A, Czegledi L (2016) Effect of nano-sized, elemental selenium supplement on the proteome of chicken liver. J Anim Physiol Anim Nutr 101:502–510. https://doi.org/10.1111/jpn.12459

    Article  CAS  Google Scholar 

  81. Boostani A, Sadeghi AA, Mousavi SN, Chamani M, Kashan N (2015) Effects of organic, inorganic, and nano-Se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress. Livest Sci. https://doi.org/10.1016/j.livsci.2015.05.004i

  82. Kumaran SC, Sugapriya S, Manivannan N, Shekar C (2015) Effect on the growth performance of broiler chickens by selenium nanoparticles supplementation. Int Res J Nano Sci Technol 5:161–168

    Google Scholar 

  83. Liu S, Tan H, Wei S, Zhao J, Yang L, Li S, Zhong C, Yin Y, Chen Y, Peng Y (2015) Effect of selenium sources on growth performance and tissue selenium retention in yellow broiler chicks. J Appl Anim Res 43:487–490

    CAS  Google Scholar 

  84. Selim NA, Radwan NL, Youssef SF, Salah-Eldin TA, Abo-Elwafa S (2015) Effect of inclusion inorganic, organic or nano selenium forms in broiler diets on: growth performance, carcass and meat characteristics. Int J Poult Sci 14(3):135–143

    CAS  Google Scholar 

  85. Salah-Eldin TA, Hamady GAA, Abdel-Moneim MA, Farroh KY, El-Reffaei WHM (2015) Nutritional evaluation of selenium-methionine nanocomposite as a novel dietary supplement for laying hens. J Anim Health Prod 3(3):64–72

    Google Scholar 

  86. El-Deep MH, Ijiri D, Tarek A, Ebeid, Ohtsuka A (2016) Effects of dietary nano-selenium supplementation on growth performance, antioxidative status, and immunity in broiler chickens under thermoneutral and high ambient temperature conditions. J Poult Sci 53:274–283

    CAS  Google Scholar 

  87. Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42:1524–1533

    CAS  PubMed  Google Scholar 

  88. Li JL, Zhang L, Yang ZY, Zhang ZY, Jiang Y, Gao F, Zhou GH (2018) Effects of different selenium sources on growth performance, antioxidant capacity and meat quality of local Chinese Subei chickens. Biol Trace Elem Res 181(2):340–346

    CAS  PubMed  Google Scholar 

  89. Ahmadi M, Ahmadian A, Seidavi AR (2018) Effect of different levels of nano-selenium on performance, blood parameters, immunity and carcass characteristics of broiler chickens. Poult Sci J 6(1):99–108

    Google Scholar 

  90. Boostani AAA, Sadeghi SN, Mousavi M, Chamani, Kashan N (2015) The effects of organic, inorganic, and nano-selenium on blood attributes in broiler chickens exposed to oxidative stress. Acta Sci Vet 43:1264–1270

    Google Scholar 

  91. Mohapatra P, Swain RK, Mishra SK, Behera T, Swain P, Mishra SS, Behura NC, Sabat SC, Sethy K, Dhama K, Jayasankar P (2014) Effects of dietary nano-selenium on tissue selenium deposition, antioxidant status and immune functions in layer chicks. Int J Pharm 10(3):160–167

    CAS  Google Scholar 

  92. Suchy P, Strakova E, Herzig I (2014) Selenium in poultry nutrition: a review. Czech J Anim Sci 59(11):495–503

    Google Scholar 

  93. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicol 189:147–163

    CAS  Google Scholar 

  94. Tapiero H, Townsend DM, Tew KD (2003) Trace elements in human physiology and pathology. Copper Biomed Pharmacother 57:386–398

    CAS  PubMed  Google Scholar 

  95. Miroshnikov SA, Yausheva EV, Sizova EA, Miroshnikova EP, Levahin VI (2015) Comparative assessment of effect of copper nano- and microparticles in chicken. Orient J Chem 31:2327–2336

    CAS  Google Scholar 

  96. Scott A, Vadalasettya KP, Sawoszb E, Łukasiewiczc, Vadalasettya RKP, Jaworskib S, Chwalibog A (2016) Effect of copper nanoparticles and copper sulphate onmetabolic rate and development of broiler embryos. Anim Feed Sci Technol 220:151–158

    CAS  Google Scholar 

  97. Sosnowska NM, Lukasiewicz M, Adamek D, Kamaszewski M, Niemiec J, Wnuk-Gnich A, Scott A, Chwalibog A, Sawosz E (2017) Effect of copper nanoparticles administered in ovo on the activity of proliferating cells and on the resistance of femoral bones in broiler chickens. Arch Anim Nutr 71(4):327–332. https://doi.org/10.1080/1745039X.2017.1331619

    Article  Google Scholar 

  98. Scott A, Vadalasetty KP, Lukasiewicz M, Jaworski S, Wierzbicki M, Chwalibog A, Sawosz E (2017) Effect of different levels of copper nanoparticles and copper sulphate on performance, metabolism and blood biochemical profiles in broiler chicken. J Anim Physiol Anim Nutr:1–10

  99. Lee I, Ko J, Park S, Lim J, Shin I, Moon C, Kim S, Heo J, Kim J (2016) Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. Intl J Nanomed 11:2883–2900

    CAS  Google Scholar 

  100. Wang T, Long X, Cheng Y, Liu Z, Yan S (2014) The potential toxicity of copper nanoparticles and copper sulphate on juvenile epinephelus coioides. Aquat Toxicol 152:96–104

    CAS  PubMed  Google Scholar 

  101. Suttle NF (2010) Mineral nutrition of livestock, 4th edn. CAB International, Oxford, pp 334–362

    Google Scholar 

  102. Nikonova IN, Folmanisb YG, Folmanisb GE, Kovalenkob LV, Lapteva GY, Egorovc IA, Fisininc VI, Tananaev IG (2011) Iron nanoparticles as a food additive for poultry. Dokl Biol Sci 440:328–331

    Google Scholar 

  103. Sizova EA, Miroshnikov SA, Lebedev SV, Кudasheva AV, Ryabov NI (2016) To the development of innovative mineral additives based on alloy of Fe and co antagonists as an example. Agric Biol 51(4):553–562

    Google Scholar 

  104. Yausheva EV, Miroshnikov SA, Kosyan DB, Sizova EA (2016) Nanoparticles in combination with amino acids change productive and immunological indicators of broiler chicken. Agric Biol 51(6):912–920

    Google Scholar 

  105. Miroshnikov SA, Yausheva EV, Sizova EA, Kosyan DB, Donnik IM (2017) Research of opportunities for using iron nanoparticles and amino acids in poultry nutrition. Intl J Geomate 13(40):124–131

    Google Scholar 

  106. Rahmatollah DA, Farzinpour VA, Sadeghi G (2017) Effect of replacing dietary FeSO4 with cysteine-coated Fe3O4 nanoparticles on quails. Ital J Anim Sci 17:121–127

    Google Scholar 

  107. Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in hela cells. Biochem Biophys Res Commun 390:733–740

    CAS  PubMed  Google Scholar 

  108. Buzea C, Ivan I, Blandino P, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):17–71

    Google Scholar 

  109. Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160:171–177

    CAS  PubMed  Google Scholar 

  110. Patel S, Jana S, Chetty R, Thakore S, Singh M, Devkar R (2017) Toxicity evaluation of magnetic iron oxide nanoparticles reveals neuronal loss in chicken embryo. Drug Chem Toxicol 42:1–8. https://doi.org/10.1080/01480545.2017.1413110

    Article  CAS  PubMed  Google Scholar 

  111. Khan RU, Naz S, Dhama K, Saminathan M, Tiwari R, Jeon GJ, Laudadio V, Tufarelli V (2014) Modes of action and beneficial applications of chromium in poultry nutrition, production and health: a review. Int J Pharmacol 10:357–367

    Google Scholar 

  112. Anderson R (1987) Chromium. in: Trace elements in human and animal nutrition, Mertz, W. 5th Ed, Vol. 1, Chapter 7, Academic Press Inc., San Diego, CA., USA., ISBN-13: 978–0124912519, pp: 225–244

  113. NRC (1997) The role of chromium in animal nutrition. National Academy Press, Washington

    Google Scholar 

  114. Hajializadeh F, Ghahri H, Talebi A (2017) Effects of supplemental chromium picolinate and chromium nanoparticles on performance and antibody titers of infectious bronchitis and avian influenza of broiler chickens under heat stress condition. Vet Res Forum 8:259–264

    PubMed  PubMed Central  Google Scholar 

  115. Sirirat N, Lu J, Hung AT, Chen S, Lien T (2012) Effects of different levels of nanoparticles of chromium picolinate supplementation on growth performance, mineral retention, and immune responses in broiler chickens. J Agric Sci 4:48–58

    Google Scholar 

  116. Sirirat N, Lu J, Hung AT, Lien T (2013) Effect of different levels of nanoparticles chromium picolinate supplementation on performance, egg quality, mineral retention, and tissues minerals accumulation in layer chickens. J Agric Sci 5:150–159

    Google Scholar 

  117. Andi MA, Shahamat A (2015) Effects of different levels of nano chromium chloride in diet on egg quality and blood chromium content of laying Japanese quail. Int J Adv Biol Biomed Res 3(4):378–383

    CAS  Google Scholar 

  118. Malathi V (2015) Performance of dual purpose chicken supplemented with chromium yeast and nano chromium. Phd Dissertation. Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar.India

  119. Sathyabama T, Jagadeeswaran A (2016) Effect of chromium supplementation on performance, mineral retention and tissue mineral accumulation in layer chickens. J Anim Res 6:989–994

    Google Scholar 

  120. Zha LY, Zeng JW, Chu XW, Mao LM, Luo HJ (2009) Efficacy of trivalent chromium on growth performance, carcass characteristics and tissue chromium in heat-stressed broilers chicks. J Sci Food Agric 89:1782–1786

    CAS  Google Scholar 

  121. Lin YC, Huang JT, Li MZ, Cheng CY, Lien TF (2014) Effects of supplemental nanoparticle trivalent chromium on the nutrient utilization, growth performance and serum traits of broilers. J Anim Physiol Anim Nutr 99:59–65. https://doi.org/10.1111/jpn.12215

    Article  CAS  Google Scholar 

  122. NRC (1994) Nutrient requirements for poultry, 9th rev. edn. National Academy Press, Washington

  123. Ahamed MIN, Rajeshkumar S, Ragul V, Anand S, Kaviyarasu K (2018) Chromium remediation and toxicity assessment of nano zerovalent iron against contaminated lake water sample (Puliyanthangal Lake, Tamilnadu, India). S Afr J Chem Eng 25:128–132

    Google Scholar 

  124. Zhu W, Richards NG (2017) Biological functions controlled by manganese redox changes in mononuclear Mn-dependent enzymes. Essays Biochem 61:259–270

    PubMed  Google Scholar 

  125. Tufarelli V, Laudadio V (2017) Manganese and its role in poultry nutrition: an overview. J Exp Biol Agric Sci 5:749–754

    CAS  Google Scholar 

  126. Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Asp Med 26:353–362

    CAS  Google Scholar 

  127. Lotfi L, Zaghari M, Zeinoddini S, Shivazad M (2014) Comparison dietary nano and micro manganese on broilers performance. Proceedings of the 5th International Conference on Nanotechnology: Fundamentals and Applications. 293

  128. Jankowski J, Ognik K, Stepniowska A, Zdunczyk Z, Kozoowski K (2018) The effect of manganese nanoparticles on apoptosis and on redox and immune status in the tissues of young turkeys. PLoS One 13(7):e0201487. https://doi.org/10.1371/journal.pone.0201487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chegeni MM, Mottaghitalab M, Moghadam SHH, Golshekan M (2019) Effects of in ovo injection of different sources of manganese on broiler performance and tibia characteristics. Iran J Anim Sci 49:527–534

    Google Scholar 

  130. Ognik K, Kozłowski K, Stępniowska A, Szlązak R (2018) The effect of manganese nanoparticles on performance, redox reactions and epigenetic changes in Turkey tissues. Anim 13:1137–1144

    Google Scholar 

  131. Singh SP, Kumari M, Kumari SI, Rahman MF, Mahboob M, Grover P (2013) Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral exposure. J Appl Toxicol 33(10):1165–1179

    CAS  PubMed  Google Scholar 

  132. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16:2346–2353

    CAS  Google Scholar 

  133. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R (2006) Silver colloid nanoparticles: synthesis, characterization and their antibacterial activity. J Phys Chem Bio 110:16248–16253

    CAS  Google Scholar 

  134. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534

    CAS  PubMed  Google Scholar 

  135. Kim JS, Kuk YEKN, Kim KH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed 3:95–101

    CAS  Google Scholar 

  136. Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25(18):4383–4391

    CAS  PubMed  Google Scholar 

  137. Chen D, Xi T, Bai J (2007) Biological effects induced by nanosilver particles: in vivo study. Biomed Mater 2(3):126–128

    CAS  Google Scholar 

  138. Yoon K, Byeon JH, Park J, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575

    CAS  PubMed  Google Scholar 

  139. Ayala-Núñez NV, Lara Villegas HH, Turrent LCI, Padilla CR (2009) Silver nanoparticles toxicity and bactericidal effect against methicillin-resistant Staphylococcus aureus: nanoscale does matter. Nanobiotechnol 5:2–9

    Google Scholar 

  140. Sawosz E, Chwalibog A, Mitura K, Mitura S, Szeliga J, Niemiec T, Rupiewicz M, Grodzik M, Sokolowska A (2011) Visualization of morphological interaction of diamond and silver nanoparticles with Salmonella Enteritidis and Listeria Monocytogenes. J Nanosci Nanotechnol 11:1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiz-ul Hassan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, S., Hassan, Fu. & Rehman, M.Su. Nano-particles of Trace Minerals in Poultry Nutrition: Potential Applications and Future Prospects. Biol Trace Elem Res 195, 591–612 (2020). https://doi.org/10.1007/s12011-019-01862-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01862-9

Keywords

Navigation