Skip to main content
Log in

Effects of Silver Nanoparticles on Burn Wound Healing in a Mouse Model

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Healing of injuries caused by exposure to heat has been discussed in many studies, although a few drugs have been shown to produce satisfactory results. In this study, 100 healthy mice randomly allocated into four categories (each = 25 mice) were analyzed. A deep second-degree burn on the back of each mouse was created. The burns were dressed daily with either AgNPs or silver sulfadiazine over 28 days of treatment. Safety evaluation of the AgNP treatment was performed by measuring the deposition rate of silver in the liver, brain, and kidney of treated mice. In the murine burn model, the speed of wound healing and the antibacterial effect of AgNPs were better than those in the silver sulfadiazine group. Burn wounds treated with SSD appeared to display a greater degree of inflammation as notable by the three clinical signs of the inflammatory process such as redness and swelling which appeared to be less after wounds treated with AgNPs. Also, AgNP treatment modified leukocytic infiltration and reduced collagen degeneration in treated mice and enhanced healing processes that were confirmed by morphological and histological investigations. Beside the potential significant effects of AgNPs on reduction of some microorganism counts that routinely isolated from burn wounds included aerobic organisms as Staphylococcus aureus and Escherichia coli when compared to both SSD and control groups. The deposition kinetics of AgNPs revealed lower distribution in the liver, brain, and kidney than that in silver sulfadiazine-treated mice with respect to both SSD and control groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jalalpure SS, Agrawal N, Patil M, Chimkode R, Tripathi A (2008) Antimicrobial and wound healing activities of leaves of Alternanthera sessilis Linn. IJGP 2(3):141–144

  2. Lau K, Paus R, Tiede S, Day P, Bayat A (2009) Exploring the role of stem cells in cutaneous wound healing. Exp Dermatol 18(11):921–933

    Article  CAS  Google Scholar 

  3. Gabriel VA (2009) Transforming growth factor-β and angiotensin in fibrosis and burn injuries. J Burn Care Res 30(3):471–481

    Article  Google Scholar 

  4. Shankar R, Melstrom KA Jr, Gamelli RL (2007) Inflammation and sepsis: past, present, and the future. J Burn Care Res 28(4):566–571

    Article  Google Scholar 

  5. Salas Campos L, Fernandes Mansilla M, Martinez de la Chica AM (2005) Topical chemotherapy for the treatment of burns. Rev Enferm(Barcelona, Spain) 28(5):67–70

    Google Scholar 

  6. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns : J Int Soc Burn Injuries 33(2):139–148. https://doi.org/10.1016/j.burns.2006.06.010

    Article  Google Scholar 

  7. Percival SL, Bowler PG, Russell D (2005) Bacterial resistance to silver in wound care. J Hosp Infect 60(1):1–7. https://doi.org/10.1016/j.jhin.2004.11.014

    Article  CAS  PubMed  Google Scholar 

  8. Alarcon EI, Udekwu K, Skog M, Pacioni NL, Stamplecoskie KG, Gonzalez-Bejar M, Polisetti N, Wickham A, Richter-Dahlfors A, Griffith M, Scaiano JC (2012) The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials 33(19):4947–4956. https://doi.org/10.1016/j.biomaterials.2012.03.033

    Article  CAS  PubMed  Google Scholar 

  9. Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvitek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30(31):6333–6340. https://doi.org/10.1016/j.biomaterials.2009.07.065

    Article  CAS  PubMed  Google Scholar 

  10. Arvizo RR, Rana S, Miranda OR, Bhattacharya R, Rotello VM, Mukherjee P (2011) Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine 7(5):580–587. https://doi.org/10.1016/j.nano.2011.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yen HJ, Hsu SH, Tsai CL (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small (Weinheim an der Bergstrasse, Germany) 5(13):1553–1561. https://doi.org/10.1002/smll.200900126

    Article  CAS  Google Scholar 

  12. Mooney EK, Lippitt C, Friedman J (2006) Silver dressings. Plast Reconstr Surg 117(2):666–669. https://doi.org/10.1097/01.prs.0000200786.14017.3a

    Article  CAS  PubMed  Google Scholar 

  13. Cho Lee AR, Leem H, Lee J, Park KC (2005) Reversal of silver sulfadiazine-impaired wound healing by epidermal growth factor. Biomaterials 26(22):4670–4676. https://doi.org/10.1016/j.biomaterials.2004.11.041

    Article  CAS  PubMed  Google Scholar 

  14. Fraser JF, Cuttle L, Kempf M, Kimble RM (2004) Cytotoxicity of topical antimicrobial agents used in burn wounds in Australasia. ANZ J Surg 74(3):139–142

    Article  Google Scholar 

  15. Schäfer B, Tentschert J, Luch A (2011) Nanosilver in consumer products and human health: more information required! Environ Sci Technol 45(17):7589–7590. https://doi.org/10.1021/es200804u

    Article  CAS  PubMed  Google Scholar 

  16. Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84(2):322. https://doi.org/10.1021/ed084p322

    Article  Google Scholar 

  17. Khazaeli P, Karamouzian M, Rohani S, Sadeghirad B, Ghalekhani N (2014) Effects of minoxidil gel on burn wound healing in rats. Iranian J Pharm Res: IJPR 13(1):243–251

    CAS  Google Scholar 

  18. Heydarnejad MS, Rahnama S, Mobini-Dehkordi M, Yarmohammadi P, Aslnai H (2014) Sliver nanoparticles accelerate skin wound healing in mice (Mus musculus) through suppression of innate immune system. Nanomedicine J 1(2):79–87. https://doi.org/10.7508/nmj.2014.02.003

    Article  Google Scholar 

  19. Siddiqui AR, Bernstein JM (2010) Chronic wound infection: facts and controversies. Clin Dermatol 28(5):519–526. https://doi.org/10.1016/j.clindermatol.2010.03.009

    Article  PubMed  Google Scholar 

  20. Starr S, MacLeod T (2003) Wound swabbing technique. Nurs Times 99(5):57–59

    PubMed  Google Scholar 

  21. Sabol F, Dancakova L, Gál P, Vasilenko T, Novotny M, Smetana K, Dvm P (2012) Immunohistological changes in skin wounds during the early periods of healing in a rat model, vol 57. https://doi.org/10.17221/5253-VETMED

  22. MdFPd C, Pereira CSB, Fregnani JH, Ribeiro FAQ (2015) Comparative histological study on wound healing on rat’s skin treated with Mitomycin C or Clobetasol propionate. Acta Cir Bras 30(9):593–597

    Article  Google Scholar 

  23. Li W, Simmons P, Shrader D, Herrman TJ, Dai SY (2013) Microwave plasma-atomic emission spectroscopy as a tool for the determination of copper, iron, manganese and zinc in animal feed and fertilizer. Talanta 112:43–48. https://doi.org/10.1016/j.talanta.2013.03.029

    Article  CAS  PubMed  Google Scholar 

  24. Baron JM, Merk HF (2001) Drug metabolism in the skin. Curr Opin Allergy Clin Immunol 1(4):287–291

    Article  CAS  Google Scholar 

  25. DeBoer S, O'Connor A (2004) Prehospital and emergency department burn care. Crit Care Nurs Clin North Am 16(1):61–73. https://doi.org/10.1016/j.ccell.2003.10.004

    Article  PubMed  Google Scholar 

  26. Agnihotri N, Gupta V, Joshi R (2004) Aerobic bacterial isolates from burn wound infections and their antibiograms—a five-year study. Burns : J Int Soc Burn Injuries 30(3):241–243

    Article  CAS  Google Scholar 

  27. Edwards R, Harding KG (2004) Bacteria and wound healing. Curr Opin Infect Dis 17(2):91–96

    Article  Google Scholar 

  28. Warriner R, Burrell R (2005) Infection and the chronic wound: a focus on silver. Adv Skin Wound Care 18(Suppl 1):2–12

    Article  Google Scholar 

  29. Cutting KF, Harding KG (1994) Criteria for identifying wound infection. J Wound Care 3(4):198–201. https://doi.org/10.12968/jowc.1994.3.4.198

    Article  CAS  PubMed  Google Scholar 

  30. Robson MC (1999) Award recipient address: lessons gleaned from the sport of wound watching. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 7(1):2–6

    Article  CAS  Google Scholar 

  31. Heggers JP (1998) Defining infection in chronic wounds: does it matter? J Wound Care 7(8):389–392. https://doi.org/10.12968/jowc.1998.7.8.389

    Article  CAS  PubMed  Google Scholar 

  32. Heggers JP, Robson MC, Doran ET (1969) Quantitative assessment of bacterial contamination of open wounds by a slide technique. Trans R Soc Trop Med Hyg 63(4):532–534

    Article  CAS  Google Scholar 

  33. Danielsen L, Balslev E, Doring G, Hoiby N, Madsen SM, Agren M, Thomsen HK, Fos HH, Westh H (1998) Ulcer bed infection. Report of a case of enlarging venous leg ulcer colonized by Pseudomonas aeruginosa. APMIS : Acta Pathol, Microbiol, Immunol Scand 106(7):721–726

    Article  CAS  Google Scholar 

  34. Sehgal SC, Arunkumar BK (1992) Microbial flora and its significance in pathology of sickle cell disease leg ulcers. Infection 20(2):86–88. https://doi.org/10.1007/BF01711070

    Article  CAS  PubMed  Google Scholar 

  35. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR, Committee HICPA (1999) Guideline for prevention of surgical site infection, 1999. Infect Control Hosp Epidemiol 20(4):247–280

    Article  Google Scholar 

  36. Pallua N, Fuchs PC, Hafemann B, Völpel U, Noah M, Lütticken R (1999) A new technique for quantitative bacterial assessment on burn wounds by modified dermabrasion. J Hosp Infect 42(4):329–337

    Article  CAS  Google Scholar 

  37. Schraibman IG (1990) The significance of beta-haemolytic streptococci in chronic leg ulcers. Ann R Coll Surg Engl 72(2):123–124

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pal’tsyn AA, Alekseev AA, Krutikov MG, Kolokol'chikova EG, Chervonskaia NV, Badikova AK, Grishina IA, Skuba ND (1996) [The causative agent of wound infection and sepsis in burn patients]. Zhurnal mikrobiologii, epidemiologii, i immunobiologii (5):84–86

  39. Ekenna O, Sherertz RJ, Bingham H (1993) Natural history of bloodstream infections in a burn patient population: the importance of candidemia. Am J Infect Control 21(4):189–195

    Article  CAS  Google Scholar 

  40. MacFarlane DE, Baum KF, Serjeant GR (1986) Bacteriology of sickle cell leg ulcers. Trans R Soc Trop Med Hyg 80(4):553–556

    Article  CAS  Google Scholar 

  41. Raahave D, Friis-Møller A, Bjerre-Jepsen K, Thiis-Knudsen J, Rasmussen LB (1986) The infective dose of aerobic and anaerobic bacteria in postoperative wound sepsis. Arch Surg 121(8):924–929

    Article  CAS  Google Scholar 

  42. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182. https://doi.org/10.1016/j.jcis.2004.02.012

    Article  CAS  PubMed  Google Scholar 

  43. Lavery L, Harkless L, Felder-Johnson K, Mundine S (1994) Bacterial pathogens in infected puncture wounds in adults with diabetes. The Journal of foot and ankle surgery: official publication of the American College of Foot and Ankle Surgeons 33(1):91–97

    CAS  Google Scholar 

  44. Faunce T, Watal A (2010) Nanosilver and global public health: international regulatory issues. Nanomedicine (London, England) 5(4):617–632. https://doi.org/10.2217/nnm.10.33

    Article  CAS  Google Scholar 

  45. Seishima M, Nojiri M, Esaki C, Yoneda K, Eto Y, Kitajima Y (1999) Activin A induces terminal differentiation of cultured human keratinocytes. J Investig Dermatol 112(4):432–436. https://doi.org/10.1046/j.1523-1747.1999.00558.x

    Article  CAS  PubMed  Google Scholar 

  46. Leibovich SJ, Ross R (1975) The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 78(1):71–100

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fahey TJ 3rd, Sadaty A, Jones WG 2nd, Barber A, Smoller B, Shires GT (1991) Diabetes impairs the late inflammatory response to wound healing. J Surg Res 50(4):308–313

    Article  Google Scholar 

  48. Morain WD, Colen LB (1990) Wound healing in diabetes mellitus. Clin Plast Surg 17(3):493–501

    CAS  PubMed  Google Scholar 

  49. Goodman L, Stein GH (1994) Basal and induced amounts of interleukin-6 mRNA decline progressively with age in human fibroblasts. J Biol Chem 269(30):19250–19255

    CAS  PubMed  Google Scholar 

  50. Zolnik BS, Gonzalez-Fernandez A, Sadrieh N, Dobrovolskaia MA (2010) Nanoparticles and the immune system. Endocrinology 151(2):458–465. https://doi.org/10.1210/en.2009-1082

    Article  CAS  PubMed  Google Scholar 

  51. Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns : J Int Soc Burn Injuries 26(2):131–138

    Article  CAS  Google Scholar 

  52. Fox CL Jr, Modak SM (1974) Mechanism of silver sulfadiazine action on burn wound infections. Antimicrob Agents Chemother 5(6):582–588

    Article  CAS  Google Scholar 

  53. Dickinson S (1973) Topical therapy of burns in children with silver sulfadiazine. N Y State J Med 73(16):2045–2049

    CAS  PubMed  Google Scholar 

  54. Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276(5309):75–81

    Article  CAS  Google Scholar 

  55. Sawhney CP, Sharma RK, Rao KR, Kaushish R (1989) Long-term experience with 1 per cent topical silver sulphadiazine cream in the management of burn wounds. Burns : J Int Soc Burn Injuries 15(6):403–406

    Article  CAS  Google Scholar 

  56. Park E-J, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168

    Article  CAS  Google Scholar 

  57. Shahare B, Yashpal M (2013) Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicol Mech Methods 23(3):161–167. https://doi.org/10.3109/15376516.2013.764950

    Article  CAS  PubMed  Google Scholar 

  58. De Jong WH, Van Der Ven LT, Sleijffers A, Park MV, Jansen EH, Van Loveren H, Vandebriel RJ (2013) Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials 34(33):8333–8343. https://doi.org/10.1016/j.biomaterials.2013.06.048

    Article  CAS  PubMed  Google Scholar 

  59. Xue Y, Zhang S, Huang Y, Zhang T, Liu X, Hu Y, Zhang Z, Tang M (2012) Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol: JAT 32(11):890–899. https://doi.org/10.1002/jat.2742

    Article  CAS  PubMed  Google Scholar 

  60. Gaiser BK, Fernandes TF, Jepson MA, Lead JR, Tyler CR, Baalousha M, Biswas A, Britton GJ, Cole PA, Johnston BD, Ju-Nam Y, Rosenkranz P, Scown TM, Stone V (2012) Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31(1):144–154. https://doi.org/10.1002/etc.703

    Article  CAS  PubMed  Google Scholar 

  61. van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJ, Hollman PC, Hendriksen PJ, Marvin HJ, Peijnenburg AA, Bouwmeester H (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6(8):7427–7442. https://doi.org/10.1021/nn302649p

    Article  CAS  PubMed  Google Scholar 

  62. Stebounova LV, Adamcakova-Dodd A, Kim JS, Park H, O'Shaughnessy PT, Grassian VH, Thorne PS (2011) Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol 8(1):5–5. https://doi.org/10.1186/1743-8977-8-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Chang HK, Lee JH, Cho MH, Kelman BJ, Yu IJ (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci: Off J Soc Toxicol 108(2):452–461. https://doi.org/10.1093/toxsci/kfn246

    Article  CAS  Google Scholar 

  64. Choban PS, Marshall WJ (1987) Leukopenia secondary to silver sulfadiazine: frequency, characteristics and clinical consequences. Am Surg 53(9):515–517

    CAS  PubMed  Google Scholar 

  65. Coombs CJ, Wan AT, Masterton JP, Conyers RA, Pedersen J, Chia YT (1992) Do burn patients have a silver lining? Burns : J Int Soc Burn Injuries 18(3):179–184

    Article  CAS  Google Scholar 

  66. Wan AT, Conyers RA, Coombs CJ, Masterton JP (1991) Determination of silver in blood, urine, and tissues of volunteers and burn patients. Clin Chem 37(10 Pt 1):1683–1687

    Article  CAS  Google Scholar 

  67. DiVincenzo GD, Giordano CJ, Schriever LS (1985) Biologic monitoring of workers exposed to silver. Int Arch Occup Environ Health 56(3):207–215. https://doi.org/10.1007/BF00396598

    Article  CAS  PubMed  Google Scholar 

  68. Williams N, Gardner I (1995) Absence of symptoms in silver refiners with raised blood silver levels. Occup Med 45(4):205–208. https://doi.org/10.1093/occmed/45.4.205

    Article  CAS  Google Scholar 

  69. Sano S, Fujimori R, Takashima M, Itokawa Y (1982) Absorption, excretion and tissue distribution of silver sulphadiazine. Burns, including thermal injury 8(4):278–285

    Article  CAS  Google Scholar 

  70. Boosalis MG, McCall JT, Ahrenholz DH, Solem LD, McClain CJ (1987) Serum and urinary silver levels in thermal injury patients. Surgery 101(1):40–43

    CAS  PubMed  Google Scholar 

  71. Tsipouras N, Rix CJ, Brady PH (1997) Passage of silver ions through membrane-mimetic materials, and its relevance to treatment of burn wounds with silver sulfadiazine cream. Clin Chem 43(2):290–301

    Article  CAS  Google Scholar 

  72. Lansdown AB (2007) Critical observations on the neurotoxicity of silver. Crit Rev Toxicol 37(3):237–250. https://doi.org/10.1080/10408440601177665

    Article  CAS  PubMed  Google Scholar 

  73. Zheng W, Aschner M, Ghersi-Egea JF (2003) Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol 192(1):1–11

    Article  CAS  Google Scholar 

  74. Caffee HH, Bingham HG (1982) Leukopenia and silver sulfadiazine. J Trauma 22(7):586–587

    Article  CAS  Google Scholar 

  75. Palmieri TL, Greenhalgh DG (2002) Topical treatment of pediatric patients with burns: a practical guide. Am J Clin Dermatol 3(8):529–534. https://doi.org/10.2165/00128071-200203080-00003

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project (RG-1438-066). The authors thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support. Authors extend thanks to their respected institutes and universities.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project (RG-1438-066).

Author information

Authors and Affiliations

Authors

Contributions

H.S. and Y.S. designed the study plan, collected literature, and drafted the manuscript. L.M. and A.A. helped in conducting research work. I.M.S., A.E., H.E., and A.S.A. provided technical help in the write-up of this manuscript. D.S. and M.E.A.E.-H. reviewed and performed the final check. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mohamed E. Abd El-Hack or Ayman A. Swelum.

Ethics declarations

The present study was performed in accordance with the recommendations of the Committee on the Ethics of Animal Experiments of Damanhour University, Egypt (DMU-2019-0023). All procedures and experiments followed the guidelines and were approved by the Local Ethic Commission of the Animal Experiments of Damanhour University with respect to animal experimentation and care of animals under study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasef, L.G., Shaheen, H.M., El-Sayed, Y.S. et al. Effects of Silver Nanoparticles on Burn Wound Healing in a Mouse Model. Biol Trace Elem Res 193, 456–465 (2020). https://doi.org/10.1007/s12011-019-01729-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01729-z

Keywords

Navigation