Skip to main content
Log in

Interactions Between Different Selenium Compounds and Essential Trace Elements Involved in the Antioxidant System of Laying Hens

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the interactions between different selenium (Se) compounds including sodium selenite (SS), selenium-enriched yeast (SY), and nano-selenium (NS) and various essential trace elements involved in the antioxidant systems, and to evaluate the effects on laying performance and egg quality. A total of 288 21-week-old Hyline Sophie hens were allotted to four dietary treatments: (1) basal diet without Se supplementation; (2) basal diet supplemented with 0.3 mg/kg Se of SS; (3) basal diet supplemented with 0.3 mg/kg Se of SY; (4) basal diet supplemented with 0.3 mg/kg Se of NS. Each treatment had eight replicates with nine hens per replicate. The trial lasted for 35 days. Results demonstrated that NS supplementation decreased the egg production (EP) and increased the feed conversion rate (FCR) and eggshell thickness and that SY changed the egg shape index (p < 0.05). Supplementation with three Se compounds significantly increased serum Se concentration and glutathione peroxidase (GSH-Px) activity in all treatment groups, as well as total superoxide dismutase (T-SOD) activity in the SY and NS groups. Yolk iron (Fe) and copper (Cu) concentrations in the NS group were also increased with Se supplementation. While the serum zinc (Zn) concentration decreased in the NS and SY groups, as well as the yolk manganese (Mn) concentration in the SY group. And the total antioxidant capability (T-AOC) of yolk with 3 days of storage in the SY and NS groups, malondialdehyde (MDA) value in the NS group, and the T-SOD activity and MDA value of yolk with 10 days of storage in the SY group also decreased. Thus, the source of Se compounds may influence the balance between Se and other trace elements including Zn, Mn, Fe, and Cu, which is important for proper antioxidant defense in blood and egg yolk of laying hens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. López-Alonso M (2012) Trace minerals and livestock: not too much not too little. ISRN Vet Sci 2012:1–18. https://doi.org/10.5402/2012/704825

    Article  Google Scholar 

  2. Chantiratikul A, Chinrasri O, Chantiratikul P (2018) Effect of selenium from selenium-enriched kale sprout versus other selenium sources on productivity and selenium concentrations in egg and tissue of laying hens. Biol Trace Elem Res 182(1):1–6. https://doi.org/10.1007/s12011-017-1069-0

    Article  CAS  Google Scholar 

  3. Yu J, Yao H, Gao X, Zhang Z, Wang JF, Xu SW (2015) The role of nitric oxide and oxidative stress in intestinal damage induced by selenium deficiency in chickens. Biol Trace Elem Res 163(1–2):144–153. https://doi.org/10.1007/s12011-014-0164-8

    Article  CAS  PubMed  Google Scholar 

  4. Placha I, Takacova J, Ryzner M, Cobanova K, Laukova A, Strompfova V, Venglovska K, Faix S (2014) Effect of thyme essential oil and selenium on intestine integrity and antioxidant status of broilers. Br Poult Sci 55(1):105–114 https://www.tandfonline.com/doi/abs/10.1080/00071668.2013.873772

    Article  CAS  Google Scholar 

  5. Li J, Xing L, Zhang R (2017) Effects of se and cd co-treatment on the morphology, oxidative stress, and ion concentrations in the ovaries of laying hens. Biol Trace Elem Res 183:156–163. https://doi.org/10.1007/s12011-017-1125-9

    Article  CAS  PubMed  Google Scholar 

  6. Li, S., Gao, F., Huang, J., Wu, Y., Wu, S., & Lei, X. G. (2018). Regulation and function of avian selenogenome. Biochim Biophys Acta Gen Subj, S0304416518300916. https://doi.org/10.1016/j.bbagen.2018.03.029

    Article  CAS  Google Scholar 

  7. Xu D, Li W, Huang Y, He J, Tian Y (2014) The effect of selenium and polysaccharide of atractylodes macrocephala koidz. (pamk) on immune response in chicken spleen under heat stress. Biol Trace Elem Res 160(2):232–237. https://doi.org/10.1007/s12011-014-0056-y

    Article  CAS  PubMed  Google Scholar 

  8. Huang, J. Q., Zhou, J. C., Wu, Y. Y., Ren, F. Z., & Lei, X. G (2018) Role of glutathione peroxidase 1 in glucose and lipid metabolism-related diseases. Free Radic Biol Med, 127, S0891584918309109-. https://doi.org/10.1016/j.freeradbiomed.2018.05.077, 108, 115

    Article  CAS  Google Scholar 

  9. Yang Z, Liu C, Zheng W, Teng X, Li S (2016) The functions of antioxidants and heat shock proteins are altered in the immune organs of selenium-deficient broiler chickens. Biol Trace Elem Res 169(2):341–351. https://doi.org/10.1007/s12011-015-0407-3

    Article  CAS  PubMed  Google Scholar 

  10. Pan CL, Huang KH, Zhao YX, Qin SY, Chen F, Hu QH (2007) Effect of selenium source and level in hen’s diet on tissue selenium deposition and egg selenium concentrations. J Agric Food Chem 55(3):1027–1032. https://doi.org/10.1021/jf062010a

    Article  CAS  PubMed  Google Scholar 

  11. Delezie E, Rovers M, Van der Aa A, Ruttens A, Wittocx S, Segers L (2014) Comparing responses to different selenium sources and dosages in laying hens. Poult Sci 93(12):3083–3090. https://doi.org/10.3382/ps.2014-04301

    Article  CAS  PubMed  Google Scholar 

  12. Boostani A, Sadeghi AA, Mousavi SN, Chamani M, Kashan N (2015) The effects of organic, inorganic, and nano-selenium on blood attributes in broiler chickens exposed to oxidative stress. Acta Sci Vet, 43(1). http://bepls.com/sep_2014/25.pdf

  13. Peng D, Zhang J, Liu Q, Taylor EW (2007) Size effect of elemental selenium nanoparticles (nano-se) at supranutritional levels on selenium accumulation and glutathione s-transferase activity. J Inorg Biochem 101(10):1457–1463. https://doi.org/10.1016/j.jinorgbio.2007.06.021

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Wang X, Xu T (2008) Elemental selenium at nano size (nano-se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol Sci 101(1):22–31. https://doi.org/10.1093/toxsci/kfm221

    Article  CAS  PubMed  Google Scholar 

  15. Cai SJ, Wu CX, Gong LM, Song T, Wu H, Zhang LY (2012) Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult Sci 91(10):2532–2539. https://doi.org/10.3382/ps.2012-02160

    Article  CAS  PubMed  Google Scholar 

  16. Kim J, Lee KY, Lee CM (2016) Selenium nanoparticles formed by modulation of carrageenan enhance osteogenic differentiation of mesenchymal stem cells. J Nanosci Nanotechnol 16(3):2482–2487. https://doi.org/10.1166/jnn.2016.10764

    Article  CAS  PubMed  Google Scholar 

  17. Hu CH, Li YL, Xiong L, Zhang HM, Song J, Xia MS (2012) Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim Feed Sci Technol 177(3–4):204–210. https://doi.org/10.1016/j.anifeedsci.2012.08.010

    Article  CAS  Google Scholar 

  18. Liu S, Tan H, Wei S, Zhao J, Yang L, Li S, Zhong C, Yin Y, Chen Y, Peng Y (2015) Effect of selenium sources on growth performance and tissue selenium retention in yellow broiler chicks. J Appl Anim Res 43(4):487–490. https://doi.org/10.1080/09712119.2014.978780

    Article  CAS  Google Scholar 

  19. Reis RN, Vieira SL, Nascimento PC, Pena JE, Barros R, Torres CA (2009) Selenium contents of eggs from broiler breeders supplemented with sodium selenite or zinc-l-selenium-methionine. J Appl Poult Res 18(2):151–157. https://doi.org/10.3382/japr.2008-00069

    Article  CAS  Google Scholar 

  20. He JH, Ohtsuka A, Hayashi K (2000) Selenium influences growth via thyroid hormone status in broiler chickens. Br J Nutr 84(5):727–732. https://doi.org/10.1017/S0007114500002087

    Article  Google Scholar 

  21. Sirirat N, Lu JJ, Hung Alex TY, Chen SY, Tu FL (2012) Effects different levels of nanoparticles chromium picolinate supplementation on growth performance, mineral retention, and immune responses in broiler chickens. J Agric Sci (1916-9752), 4(12). https://doi.org/10.5539/jas.v4n12p48

  22. Forbes RM, Weingartner KE, Parker HM, Bell RR, Erdman JW (1979) Bioavailability to rats of zinc, magnesium and calcium in casein-, egg- and soy protein-containing diets. J Nutr 109(9):1652–1660. https://doi.org/10.1093/jn/109.9.1652

    Article  CAS  PubMed  Google Scholar 

  23. Lin X, Liu Y, Meng T, Xie C, Wu X, Yin Y (2018) Circadian calcium feeding regime in laying hens related to zinc concentration, gene expression of circadian clock, calcium transporters and oxidative status[J]. J Trace Elem Med Biol 50:518–526. https://doi.org/10.1016/j.jtemb.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  24. Feroci G, Badiello R, Fini A (2005) Interactions between different selenium compounds and zinc, cadmium and mercury. J Trace Elem Med Biol 18(3):227–234. https://doi.org/10.1016/j.jtemb.2004.09.005

    Article  CAS  PubMed  Google Scholar 

  25. Jia R, Ma Q, Fan Y, Ji C, Zhang J, Liu T et al (2016) The toxic effects of combined aflatoxins and zearalenone in naturally contaminated diets on laying performance, egg quality and mycotoxins residues in eggs of layers and the protective effect of bacillus subtilis biodegradation product. Food Chem Toxicol 90:142–150. https://doi.org/10.1016/j.fct.2016.02.010

    Article  CAS  Google Scholar 

  26. Hargitai R, Nagy G, Nyiri Z, Bervoets L, Eke Z, Eens M, Török J (2016) Effects of breeding habitat (woodland versus urban) and metal pollution on the egg characteristics of great tits (parus major). Sci Total Environ 544:31–38. https://doi.org/10.1016/j.scitotenv.2015.11.116

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Lin X, Zhou X, Wan D, Wang Z, Wu X, Yin Y (2017) Effects of dynamic feeding low and high methionine diets on egg quality traits in laying hens. Poult Sci 96:1459–1465. https://doi.org/10.3382/ps/pew398

    Article  CAS  PubMed  Google Scholar 

  28. Ni Y, Wu Y, Kokot S (2002) Improved icp-oes analysis of trace calcium in rare-earth matrices with the use of iterative target transformation factor analysis and kalman filter. J Anal At Spectrom 17(6):596–602. https://doi.org/10.1039/b110325n

    Article  CAS  Google Scholar 

  29. Chen F, Zhu L, Qiu H, Qin S (2017) Selenium-enriched Saccharomyces cerevisiae improves growth, antioxidant status and selenoprotein gene expression in arbor acres broilers. J Anim Physiol Anim Nutr (Berl) 101(2):259–266. https://doi.org/10.1111/jpn.12571

    Article  Google Scholar 

  30. Pappas AC, Zoidis E, Georgiou CA, Demiris N, Surai PF, Fegeros K (2011) Influence of organic selenium supplementation on the accumulation of toxic and essential trace elements involved in the antioxidant system of chicken. Food Addit Contam Part A 28(4):446–454. https://doi.org/10.1080/19440049.2010.549152

    Article  CAS  Google Scholar 

  31. Chantiratikul A, Chinrasri O, Chantiratikul P (2008) Effect of sodium selenite and zinc-l-selenomethionine on performance and selenium concentrations in eggs of laying hens. Asian Australas J Anim Sci 21(7):1048–1052. https://doi.org/10.5713/ajas.2008.70576

    Article  CAS  Google Scholar 

  32. Jiakui L, Xiaolong W (2005) Effect of dietary organic versus inorganic selenium in laying hens on the productivity, selenium distribution in egg and selenium content in blood, liver and kidney. J Trace Elem Med Biol 18(1):65–68. https://doi.org/10.1016/j.jtemb.2004.04.002

    Article  CAS  Google Scholar 

  33. Payne RL, Lavergne TK, Southern LL (2005) Effect of inorganic versus organic selenium on hen production and egg selenium concentration. Poult Sci 84(2):232–237. https://doi.org/10.1093/ps/84.2.232

    Article  CAS  PubMed  Google Scholar 

  34. Paton ND, Cantor AH, Pescatore AJ, Ford MJ, Smith CA (2002) The effect of dietary selenium source and level on the uptake of selenium by developing chick embryos. Poult Sci 81(10):1548–1554. https://doi.org/10.1093/ps/81.10.1548

    Article  CAS  PubMed  Google Scholar 

  35. Utterback PL, Parsons CM, Yoon I, Butler J (2005) Effect of supplementing selenium yeast in diets of laying hens on egg selenium content. Poult Sci 84:1900–1901. https://doi.org/10.1093/ps/84.12.1900

    Article  CAS  PubMed  Google Scholar 

  36. Bennett DC, Cheng KM (2010) Selenium enrichment of table eggs. Poult Sci 89(10):2166–2172. https://doi.org/10.3382/ps.2009-00571

    Article  CAS  PubMed  Google Scholar 

  37. Lichovnikova M (2007) The effect of dietary calcium source, concentration and particle size on calcium retention, eggshell quality and overall calcium requirement in laying hens. Br Poult Sci 48(1):71–75. https://doi.org/10.1080/00071660601148203

    Article  CAS  PubMed  Google Scholar 

  38. Xu T, Gao X, Liu G (2016) The antagonistic effect of selenium on lead toxicity is related to the ion profile in chicken liver. Biol Trace Elem Res 169(2):365–373. https://doi.org/10.1007/s12011-015-0422-4

    Article  CAS  PubMed  Google Scholar 

  39. Suttle N, Suttle N (2009) Mineral nutrition of livestock. Cabi Bookshop 215(6):1–8. https://doi.org/10.1079/9781845934729.0000

    Article  Google Scholar 

  40. Yao H, Zhao X, Fan R, Sattar H, Zhao J, Zhao W et al (2017) Selenium deficiency-induced alterations in ion profiles in chicken muscle. Plos One 12(9):e0184186. https://doi.org/10.1371/journal.pone.0184186

    Article  Google Scholar 

  41. Zheng SF, Xing HJ, Zhang QJ, Xue H, Zhu FT, Xu SW (2018) Pharmacokinetics of sodium selenite administered orally in blood and tissues of selenium-deficient ducklings. Biol Trace Elem Res. https://doi.org/10.1007/s12011-018-1567-8

    Article  Google Scholar 

  42. Jin, X., Jia, T., Liu, R., & Xu, S. (2018). The antagonistic effect of selenium on cadmium-induced apoptosis via ppar-γ/pi3k/akt pathway in chicken pancreas. J Hazard Mater, S0304389418304412-. https://doi.org/10.1016/j.jhazmat.2018.06.003

    Article  CAS  Google Scholar 

  43. Gao T, Wang F, Li S, Luo X, Zhang K (2011) Manganese regulates manganese-containing superoxide dismutase (mnsod) expression in the primary broiler myocardial cells. Biol Trace Elem Res 144(1–3):695–704. https://doi.org/10.1007/s12011-011-9093-y

    Article  CAS  Google Scholar 

  44. Feng J, Ma WQ, Xu ZR, He JX, Wang YZ, Liu JX (2009) The effect of iron glycine chelate on tissue mineral levels, fecal mineral concentration, and liver antioxidant enzyme activity in weanling pigs. Anim Feed Sci Technol 150(1):106–113. https://doi.org/10.1016/j.anifeedsci.2008.07.004

    Article  CAS  Google Scholar 

  45. Zhang Y, Wan D, Zhou X, Long C, Wu X, Li L, He L, Huang P, Chen S, Tan B, Yin Y (2017) Diurnal variations in iron concentrations and expression of genes involved in iron absorption and metabolism in pigs. Biochem Biophys Res Commun 490(4):1210–1214. https://doi.org/10.1016/j.bbrc.2017.06.187

    Article  CAS  Google Scholar 

  46. Soares MP, Hamza I (2016) Macrophages and iron metabolism. Immunity 44(3):492–504. https://doi.org/10.1016/j.immuni.2016.02.016

    Article  CAS  Google Scholar 

  47. Zhou X, Wang Y (2011) Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi yellow chicken. Poult Sci 90(3):680–686. https://doi.org/10.3382/ps.2011-01921

    Article  CAS  PubMed  Google Scholar 

  48. Rao SVR, Prakash B, Panda AK, Poonam S, Murthy OK (2013) Effect of supplementing organic selenium on performance, carcass traits, oxidative parameters and immune responses in commercial broiler chickens. Asian Australas J Anim Sci 26(2):247–252. https://doi.org/10.5713/ajas.2012.12299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jing CL, Dong XF, Wang ZM, Liu S, Tong JM (2015) Comparative study of dl-selenomethionine vs sodium selenite and seleno-yeast on antioxidant activity and selenium status in laying hens. Poult Sci 94(5):965–975. https://doi.org/10.3382/ps/pev045

    Article  CAS  PubMed  Google Scholar 

  50. Meng TT, Liu YL, Xie CY, Zhang B, Huang YQ, Zhang YW et al (2018) Effects of different selenium sources on laying performance, egg selenium concentration, and antioxidant capacity in laying hens. Biol Trace Elem Res. https://doi.org/10.1007/s12011-018-1490-z

    Article  Google Scholar 

  51. Anton M (2013) Egg yolk: structures, functionalities and processes. J Sci Food Agric 93(12):2871–2880. https://doi.org/10.1002/jsfa.6247

    Article  CAS  PubMed  Google Scholar 

  52. Kralik Z, Kralik G, Biazik E, Straková E, Suchy P (2013) Effects of organic selenium in broiler feed on the content of selenium and fatty acid profile in lipids of thigh muscle tissue. Acta Vet Brno 82(3):277–282. https://doi.org/10.2754/avb201382030277

    Article  CAS  Google Scholar 

  53. Ahmad H, Tian J, Wang J, Khan MA, Wang Y, Zhang L, Wang T (2012) Effects of dietary sodium selenite and selenium yeast on antioxidant enzyme activities and oxidative stability of chicken breast meat. J Agric Food Chem 60(29):7111–7120. https://doi.org/10.1021/jf3017207

    Article  CAS  PubMed  Google Scholar 

  54. Liu CP, Fu J, Xu FP, Wang XS, Li S (2015) The role of heat shock proteins in oxidative stress damage induced by se deficiency in chicken livers. Biometals 28(1):163–173. https://doi.org/10.1007/s10534-014-9812-x

    Article  CAS  PubMed  Google Scholar 

  55. Baylan M, Canogullari S, Ayasan T, Copur G (2011) Effects of dietary selenium source, storage time, and temperature on the quality of quail eggs. Biol Trace Elem Res 143(2):957–964. https://doi.org/10.1007/s12011-010-8912-x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received support from the Qingyuan Technology Program (2018B02) and Guangzhou Tanke Bio-tech Co., Ltd., Guangdong, China.

Author information

Authors and Affiliations

Authors

Contributions

Yurong Zhao and Jiahua He designed the experiment; Xue Lin analyzed the data; and Xue Lin, Ting Yang, and Yinli Ji performed the experiments. Xue Lin wrote the manuscript, and Yurong Zhao, Jianhua He, and Hua Li revised it. Xue Lin, Ting Yang, and Yinli Ji contributed to data collection and analysis. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yurong Zhao or Jianhua He.

Ethics declarations

Experiments were carried out in accordance with the ethical guidelines of Hunan Agricultural University for the care and use of laboratory animals.

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Yang, T., Li, H. et al. Interactions Between Different Selenium Compounds and Essential Trace Elements Involved in the Antioxidant System of Laying Hens. Biol Trace Elem Res 193, 252–260 (2020). https://doi.org/10.1007/s12011-019-01701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01701-x

Keywords

Navigation