Skip to main content
Log in

Selenium Protects against Lead-induced Apoptosis via Endoplasmic Reticulum Stress in Chicken Kidneys

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Lead (Pb) is a toxic heavy metal and can harm organisms by inducing apoptosis. Selenium (Se), an essential trace element for humans and animals, can alleviate heavy metal toxicity. The aim of our study is to investigate alleviative effect of Se on Pb-induced apoptosis via endoplasmic reticulum (ER) stress in chicken kidneys. One hundred and eighty male chickens were randomly divided into four groups at 7 days of age and were fed with commercial diet (containing 0.49 mg/kg Se) and drinking water, Na2SeO3-added commercial diet (containing 1 mg/kg Se) and drinking water, the commercial diet and (CH3OO)2Pb-added drinking water (containing 350 mg/L Pb), and Na2SeO3-added commercial diet (containing 1 mg/kg Se) and (CH3OO)2Pb-added drinking water (containing 350 mg/L Pb), respectively. On the 30th, 60th, and 90th days of the experiment period, 15 chickens in each group were euthanized and the kidneys were collected. Following contents were performed: kidney ultrastructure; nitric oxide (NO) content; inducible nitric oxide synthase (iNOS) activity; relative messenger RNA (mRNA) and protein expression of iNOS, ER-related genes (glucose-regulated protein (GRP)78, GRP94, activating transcription factor (ATF)4, ATF6, and iron-responsive element (IRE)), and apoptosis-related genes (caspase-3 and B cell lymphoma-2 (Bcl-2)); and caspase-12 protein expression. The results indicated that Pb changed kidney ultrastructural structure; decreased Bcl-2 mRNA and protein expression; and increased NO content, iNOS activity, relative mRNA and protein expression of iNOS, ER-related genes, and caspase-3 and caspase-12 protein expression. Se attenuated above changes caused by Pb. Pb had time-dependent manners on NO content, GRP78, GRP94, ATF4, IRE, and caspase-3 mRNA expression. Se attenuated Pb-induced apoptosis via ER stress in the chicken kidneys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sikka R, Nayyar VK (2009) Monitoring of lead (Pb) pollution in soils and plants irrigated with untreated sewage water in some industrialized cities of Punjab, India. Environ Monit Assess 154(4):53–64. doi:10.1007/s10661-008-0377-4

    Article  CAS  PubMed  Google Scholar 

  2. Zhang X, Yang L, Li Y et al (2012) Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ Monit Assess 184(4):2261–2273. doi:10.1007/s10661-011-2115-6

    Article  CAS  PubMed  Google Scholar 

  3. Kim J, Oh JM (2015) Tissue distribution of heavy metals in heron and egret chicks from pyeongtaek, Korea. Arch Environ Contam Toxicol 68(2):283–291. doi:10.1007/s00244-014-0110-y

    Article  CAS  PubMed  Google Scholar 

  4. Mateo R, Toledo RD (2009) Lead poisoning in wild birds in Europe and the regulations adopted by different countries. In: Watson RT, Fuller M, Pokras M, Hunt WG (eds) Ingestion of lead from spent ammunition: implications for wildlife and humans. The Peregrine Fund, Boise, Idaho, USA. doi:10.4080/ilsa.2009.0107

    Google Scholar 

  5. Liu CM, Ma JQ, Sun YZ (2012) Puerarin protects rat kidney from lead-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Toxicol Appl Pharmacol 258(3):330–342. doi:10.1016/j.taap.2011.11.015

    Article  CAS  PubMed  Google Scholar 

  6. Jin X, Xu Z, Zhao X et al (2017) The antagonistic effect of selenium on lead-induced apoptosis via mitochondrial dynamics pathway in the chicken kidney. Chemosphere 180:259–266. doi:10.1016/j.chemosphere.2017.03.130

    Article  CAS  PubMed  Google Scholar 

  7. Hiraga T, Ohyama K, Hashigaya A et al (2008) Lead exposure induces pycnosis and enucleation of peripheral erythrocytes in the domestic fowl. Vet J 178(1):109–114. doi:10.1016/j.tvjl.2007.06.023

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Wang H, Li J et al (2011) Simultaneous effects of lead and cadmium on primary cultures of rat proximal tubular cells: interaction of apoptosis and oxidative stress. Arch Environ Contam Toxicol 61(3):500–511. doi:10.1007/s00244-011-9644-4

    Article  CAS  PubMed  Google Scholar 

  9. Wang H, Wang ZK, Jiao P et al (2015) Redistribution of subcellular calcium and its effect on apoptosis in primary cultures of rat proximal tubular cells exposed to lead. Toxicology 333:137–146. doi:10.1016/j.tox.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  10. Gotoh T, Mori M (2006) Nitric oxide and endoplasmic reticulum stress. Arterioscler Thromb Vasc Biol 26(7):1439–1446. doi:10.1161/01.ATV.0000223900.67024.15

    Article  CAS  PubMed  Google Scholar 

  11. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11(4):381–389. doi:10.1038/sj.cdd.4401373

    Article  CAS  PubMed  Google Scholar 

  12. Breckenridge DG, Germain M, Mathai JP et al (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22(53):8608–8618. doi:10.1038/sj.onc.1207108

    Article  CAS  PubMed  Google Scholar 

  13. Chung HT, Pae HO, Choi BM et al (2001) Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun 282(5):1075–1079. doi:10.1006/bbrc.2001.4670

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Li S, Teng X (2016) The antagonistic effect of selenium on lead-induced inflammatory factors and heat shock proteins mRNA expression in chicken livers. Biol Trace Elem Res 171(2):1–8. doi:10.1007/s12011-015-0532-z

    Article  Google Scholar 

  15. Xing M, Zhao P, Guo G et al (2015) Inflammatory factor alterations in the gastrointestinal tract of cocks overexposed to arsenic trioxide. Biol Trace Elem Res 167(2):288–299. doi:10.1007/s12011-015-0305-8

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Sun L, Ye L et al (2008) Lead-induced stress response in endoplasmic reticulum of astrocytes in CNS. Toxicol Mech Methods 18(9):751–757. doi:10.1080/15376510802390908

    Article  CAS  PubMed  Google Scholar 

  17. Liu CM, Zheng YL, Lu J et al (2010) Quercetin protects rat liver against lead-induced oxidative stress and apoptosis. Environ Toxicol Pharmacol 29(2):158–166. doi:10.1016/j.etap.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  18. Liu C, Sun Z, Xu Z et al. (2017) Down-regulation of microRNA-155 promotes selenium deficiency-induced apoptosis by tumor necrosis factor receptor superfamily member 1B in the broiler spleen. Oncotarget. Accepted 22 March 2017

  19. Yao HD, Wu Q, Zhang ZW et al (2013a) Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of se-deficient chicks. J Nutr 143(5):613–619. doi:10.3945/jn.112.172395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yao HD, Wu Q, Zhang ZW et al (2013b) Selenoprotein W serves as an antioxidant in chicken myoblasts. Biochim Biophys Acta 1830(4):3112–3120. doi:10.1016/j.bbagen.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  21. Frisk P, Wester K, Yaqob A et al (2003) Selenium protection against mercury-induced apoptosis and growth inhibition in cultured K-562 cells. Biol Trace Elem Res 92(2):105–114. doi:10.1385/BTER:92:2:105

    Article  CAS  PubMed  Google Scholar 

  22. Li YF, Dong Z, Chen C et al (2012) Organic selenium supplementation increases mercury excretion and decreases oxidative damage in long-term mercury-exposed residents from Wanshan, China. Environ Sci Technol 46(20):11313–11318. doi:10.1021/es302241v

    Article  CAS  PubMed  Google Scholar 

  23. Zhang R, Yi R, Bi Y et al (2017) The effect of selenium on the Cd-induced apoptosis via no-mediated mitochondrial apoptosis pathway in chicken liver. Biol Trace Elem Res:1–10. doi:10.1007/s12011-016-0925-7

  24. Jiao X, Yang K, An Y et al (2017) Alleviation of lead-induced oxidative stress and immune damage by selenium in chicken bursa of Fabricius. Environ Sci Pollut Res Int 24(8):7555–7564. doi:10.1007/s11356-016-8329-y

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Xing M, Chen M et al (2017) Eects of selenium-lead interaction on the gene expression of inflammatory factors and selenoproteins in chicken neutrophils. Ecotox Environ Safe 139:447–453. doi:10.1016/j.ecoenv.2017.02.017

    Article  CAS  Google Scholar 

  26. Liu L, Yang B, Cheng Y et al (2015) Ameliorative effects of selenium on cadmium-induced oxidative stress and endoplasmic reticulum stress in the chicken kidney. Biol Trace Elem Res 167(2):1–12. doi:10.1007/s12011-015-0314-7

    Google Scholar 

  27. Chen J, Pan T, Na W et al (2017) Cadmium-induced endoplasmic reticulum stress in chicken neutrophils is alleviated by selenium. J Inorg Biochem 170:169–177. doi:10.1016/j.jinorgbio.2017.02.022

    Article  CAS  PubMed  Google Scholar 

  28. Klaassen CD, Amdur MO (2007) Casarett and Doull’s toxicology: the basic science of poisons. McGraw-Hill Professional/Jaypee Brothers Medical Publishers, New York

    Google Scholar 

  29. Vengris VE, Maré CJ (1974) Lead poisoning in chickens and the effect of lead on interferon and antibody production. Can J Comp Med 38(3):328–325

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45. doi:10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Komosa A, Kitowski I, Chibowski S et al (2009) Selected radionuclides and heavy metals in skeletons of birds of prey from eastern Poland. J Radioanal Nucl Ch 281(3):467–478. doi:10.1007/s10967-009-0029-3

    Article  CAS  Google Scholar 

  32. Liu G, Wang ZK, Wang ZY et al (2016) Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol 90(5):1193–1209. doi:10.1007/s00204-015-1547-0

    Article  CAS  PubMed  Google Scholar 

  33. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Bio 13(3):184–190. doi:10.1038/ncb0311-184

    Article  CAS  Google Scholar 

  34. Xu W, Liu L, Charles IG et al (2004) Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat Cell Biol 6(11):1129–1134. doi:10.1038/ncb1188

    Article  CAS  PubMed  Google Scholar 

  35. Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75(6):639–653. doi:10.1016/j.lfs.2003.10.042

    Article  CAS  PubMed  Google Scholar 

  36. Zhu G, Lee AS (2015) Role of the unfolded protein response, GRP78 and GRP94 in organ homeostasis. J Cell Physiol 230(7):1413–1420. doi:10.1002/jcp.24923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shiraishi H, Okamoto H, Yoshimura A et al (2006) ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving APAF-1. J Cell Sci 119(19):3958–3966. doi:10.1242/jcs.03160

    Article  CAS  PubMed  Google Scholar 

  38. Shen J, Chen X, Hendershot L et al (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3(1):99–111. doi:10.1016/S1534-5807(02)00203-4

    Article  CAS  PubMed  Google Scholar 

  39. Luo S, Baumeister P, Yang S et al (2003) Induction of Grp78/BiP by translational block: activation of the Grp78 promoter by ATF4 through and upstream ATF/CRE site independent of the endoplasmic reticulum stress elements. JBC 2003 278(39):37375–37385. doi:10.1074/jbc.M303619200

    CAS  Google Scholar 

  40. Imaizumi K, Miyoshi K, Katayama T et al (2001) The unfolded protein response and Alzheimer’s disease. Biochim Biophys Acta 1536(2–3):85–96. doi:10.1016/S0925-4439(01)00049-7

    Article  CAS  PubMed  Google Scholar 

  41. Hitomi J, Katayama T, Taniguchi M et al (2004) Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci Lett 357(2):127–130. doi:10.1016/j.neulet.2003.12.080

    Article  CAS  PubMed  Google Scholar 

  42. Hetz CA (2007) ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage. Antioxid Redox Signal 9(12):2345–2355. doi:10.1089/ars.2007.1793

    Article  CAS  PubMed  Google Scholar 

  43. Tamatani M, Ogawa S, Niitsu Y et al (1998) Involvement of Bcl-2 family and caspase-3-like protease in NO-mediated neuronal apoptosis. J Neurochem 71(4):1588–1596. doi:10.1046/j.1471-4159.1998.71041588.x

    Article  CAS  PubMed  Google Scholar 

  44. Shinkai Y, Yamamoto C, Kaji T (2010) Lead induces the expression of endoplasmic reticulum chaperones GRP78 and GRP94 in vascular endothelial cells via the JNK-AP-1 pathway. Toxicol Sci 114(2):378–386. doi:10.1093/toxsci/kfq008

    Article  CAS  PubMed  Google Scholar 

  45. Shao CC, Li N, Zhang ZW et al (2014) Cadmium supplement triggers endoplasmic reticulum stress response and cytotoxicity in primary chicken hepatocytes. Ecotoxicol Environ Saf 106:109–114. doi:10.1016/j.ecoenv.2014.04.033

    Article  CAS  PubMed  Google Scholar 

  46. Tang CH, Chiu YC, Huang CF et al (2009) Arsenic induces cell apoptosis in cultured osteoblasts through endoplasmic reticulum stress. Toxicol Appl Pharmacol 241(2):173–181. doi:10.1016/j.taap.2009.08.011

    Article  CAS  PubMed  Google Scholar 

  47. Baranowska-Bosiacka I, Strużyńska L, Gutowska I et al (2013) Perinatal exposure to lead induces morphological, ultrastructural and molecular alterations in the hippocampus. Toxicology 303(1):187–200. doi:10.1016/j.tox.2012.10.027

    Article  CAS  PubMed  Google Scholar 

  48. Wang Y, Wang K, Huang H et al (2017) Alleviative effect of selenium on inflammatory damage caused by lead via inhibiting inflammatory factors and heat shock proteins in chicken testes. Environ Sci Pollut Res Int 2017:1–9. doi:10.1007/s11356-017-8785-z

    Google Scholar 

Download references

Acknowledgments

All authors have read the manuscript and agreed to submit it in its current form for consideration for publication in Biological Trace Element Research. This paper has not been published or accepted for publication. It is not under consideration at another journal.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianhong Gu or Xiaohua Teng.

Ethics declarations

All procedures used in this experiment were approved by the Northeast Agricultural University’s Institutional Animal Care and Use Committee under the approved protocol number SRM-06.

Funding

The study was funded by the Agricultural Science and Technology Innovation Program (ASTIPIAS07), Heilongjiang Province on Natural Fund Project (No. C201420), and Heilongjiang excellent livestock training program.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., An, Y., Jiao, W. et al. Selenium Protects against Lead-induced Apoptosis via Endoplasmic Reticulum Stress in Chicken Kidneys. Biol Trace Elem Res 182, 354–363 (2018). https://doi.org/10.1007/s12011-017-1097-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1097-9

Keywords

Navigation