Skip to main content
Log in

Lactobacillus plantarum CCFM639 Alleviate Trace Element Imbalance-Related Oxidative Stress in Liver and Kidney of Chronic Aluminum Exposure Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Aluminum (Al) has various adverse effects on health of humans and animals. The aim of present study was to demonstrate that Lactobacillus plantarum CCFM639 can alleviate the adverse effects on liver and kidney of mice caused by chronic Al exposure. Animals were assigned into control, CCFM639 only, Al only, Al plus CCFM639, and Al plus deferiprone groups. The strain was given by oral gavage for 14 weeks, and Al was introduced via drinking water for the first 8 weeks. Analyses of Al and trace elements levels in feces, blood, and tissues were performed. The biochemical markers (GSH, GPx, SOD, CAT, and MDA) of oxidative stress in livers and kidneys, as well as the levels of ALT, AST, BUN, and CRE in blood, were determined. Our results showed that L. plantarum CCFM639 can significantly reduce Al accumulation in tissues, regulate imbalance of trace elements, and thereby alleviate oxidative stress and pathological changes in hepatic and renal tissues. Therefore, L. plantarum CCFM639 could alleviate Al-induced hepatic and renal injuries, and the possible mechanisms may involve in regulating the imbalance of trace elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhou YZ, Yokel RA (2005) The chemical species of aluminum influences its paracellular flux across and uptake into Caco-2 cells, a model of gastrointestinal absorption. Toxicol Sci 87:15–26

    Article  CAS  PubMed  Google Scholar 

  2. Kumar V, Gill KD (2009) Aluminium neurotoxicity: neurobehavioural and oxidative aspects. Arch Toxicol 83:965–978

    Article  CAS  PubMed  Google Scholar 

  3. Aguilar HAF, Barlow S, Castle L, et al. (2008) Scientific opinion of the panel on food additives, flavourings, processing aids and food contact materials on a request from European Commission on Safety of aluminium from dietary intake. The EFSA Journal 754:1–34

    Google Scholar 

  4. Walton JR (2009) Functional impairment in aged rats chronically exposed to human range dietary aluminum equivalents. Neurotoxicology 30:182–193

    Article  CAS  PubMed  Google Scholar 

  5. Gorsky JE, Dietz AA, Spencer H, et al. (1979) Metabolic balance of aluminum studied in six men. Clin Chem 25:1739–1743

    CAS  PubMed  Google Scholar 

  6. Kaehny WD, Hegg AP, Alfrey AC (1977) Gastrointestinal absorption of aluminum from aluminum-containing antacids. N Engl J Med 296:1389–1390

    Article  CAS  PubMed  Google Scholar 

  7. Sutherland JE, Greger JL (1998) Kinetics of aluminum disposition after ingestion of low to moderate pharmacological doses of aluminum. Toxicology 126:115–125

    Article  CAS  PubMed  Google Scholar 

  8. Gonzalez MA, Roma MG, Bernal CA, et al. (2004) Biliary secretory function in rats chronically intoxicated with aluminum. Toxicol Sci 79:189–195

    Article  CAS  PubMed  Google Scholar 

  9. Kruck TP, Fisher EA, McLachlan DR (1990) Suppression of deferoxamine mesylate treatment-induced side effects by coadministration of isoniazid in a patient with Alzheimer’s disease subject to aluminum removal by ion-specific chelation. Clin Pharmacol Ther 48:439–446

    Article  CAS  PubMed  Google Scholar 

  10. Exley C (2004) The pro-oxidant activity of aluminum. Free Radic Biol Med 36:380–387

    Article  CAS  PubMed  Google Scholar 

  11. Nehru B, Bhalla P (2006) Reversal of an aluminium induced alteration in redox status in different regions of rat brain by administration of centrophenoxine. Mol Cell Biochem 290:185–191

    Article  CAS  PubMed  Google Scholar 

  12. Zhu Y, Li Y, Miao L, et al. (2014) Immunotoxicity of aluminum. Chemosphere 104:1–6

    Article  PubMed  Google Scholar 

  13. Zhu Y, Li X, Chen C, et al. (2012) Effects of aluminum trichloride on the trace elements and cytokines in the spleen of rats. Food Chem Toxicol 50:2911–2915

    Article  CAS  PubMed  Google Scholar 

  14. Yang Y, Wang H, Guo Y, et al. (2016) Metal ion imbalance-related oxidative stress is involved in the mechanisms of liver injury in a rat model of chronic aluminum exposure. Biol Trace Elem Res. doi:10.1007/s12011-016-0627-1

    Google Scholar 

  15. Yu L, Zhai Q, Liu X, et al. (2015) Lactobacillus plantarum CCFM639 alleviates aluminium toxicity. Appl Microbiol Biotechnol:1–10

  16. Echabaane M, Rouis A, Bonnamour I, et al. (2013) Studies of aluminum (III) ion-selective optical sensor based on a chromogenic calix[4]arene derivative. Spectrochim Acta A Mol Biomol Spectrosc 115:269–274

    Article  CAS  PubMed  Google Scholar 

  17. Prakash D, Gopinath K, Sudhandiran G (2013) Fisetin enhances behavioral performances and attenuates reactive gliosis and inflammation during aluminum chloride-induced neurotoxicity. Neruomol Med 15:192–208

    Article  CAS  Google Scholar 

  18. Park E-J, Umh HN, Kim S-W, et al. (2014) ERK pathway is activated in bare-FeNPs-induced autophagy. Arch Toxicol 88:323–336

    Article  CAS  PubMed  Google Scholar 

  19. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (2008) Toxicological profile for aluminum. DIANE Publishing Company, Atlanta, GA

    Google Scholar 

  20. Wang Y, Liu Y, Sidhu A, et al. (2012) Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol 303:G32–G41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhai Q, Wang G, Zhao J, et al. (2014) Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration. Appl Environ Microbiol 80:4063–4071

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alexandrov PN, Zhao YH, Pogue AI, et al. (2005) Synergistic effects of iron and aluminum on stress-related gene expression in primary human neural cells. J Alzheimers Dis 8:117–127

    CAS  PubMed  Google Scholar 

  23. Goyer RA (1997) Toxic and essential metal interactions. Annu Rev Nutr 17:37–50

    Article  CAS  PubMed  Google Scholar 

  24. Martin RB (1986) The chemistry of aluminum as related to biology and medicine. Clin Chem 32:1797–1806

    CAS  PubMed  Google Scholar 

  25. Metwally FM, Mazhar MS (2007) Effect of aluminium on the levels of some essential elements in occupationally exposed workers. Arh Hig Rada Toksikol 58:305–311

    Article  CAS  PubMed  Google Scholar 

  26. Day JP, Barker J, Evans LJA, et al. (1991) Aluminum absorption studied by Al-26 tracer. Lancet 337:1345–1345

    Article  CAS  PubMed  Google Scholar 

  27. Macdonald TL, Martin RB (1988) Aluminum ion in biological systems. Trends Biochem Sci 13:15–19

    Article  CAS  PubMed  Google Scholar 

  28. Martin RB (1994) Aluminum: a neurotoxic product of acid rain. Acc Chem Res 27:204–210

    Article  CAS  Google Scholar 

  29. Orihuela D (2009) Inhibitory effect of aluminium on calcium absorption in small intestine of rats with different thyroid hormone status. J Inorg Biochem 103:1542–1547

    Article  CAS  PubMed  Google Scholar 

  30. Scholz-Ahrens KE, Ade P, Marten B, et al. (2007) Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr 137:838S–846S

    CAS  PubMed  Google Scholar 

  31. Zhai Q, Wang G, Zhao J, et al. (2013) Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice. Appl Environ Microbiol 79:1508–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Culotta VC, Yang M, O’Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763:747–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khanna P, Nehru B (2007) Antioxidant enzymatic system in neuronal and glial cells enriched fractions of rat brain after aluminum exposure. Cell Mol Neurobiol 27:959–969

    Article  CAS  PubMed  Google Scholar 

  34. Kumar V, Bal A, Gill KD (2009) Susceptibility of mitochondrial superoxide dismutase to aluminium induced oxidative damage. Toxicology 255:117–123

    Article  CAS  PubMed  Google Scholar 

  35. Linardaki ZI, Orkoula MG, Kokkosis AG, et al. (2013) Investigation of the neuroprotective action of saffron (Crocus sativus L.) in aluminum-exposed adult mice through behavioral and neurobiochemical assessment. Food Chem Toxicol 52:163–170

    Article  CAS  PubMed  Google Scholar 

  36. Mahieu S, Contini Mdel C, Gonzalez M, et al. (2009) Melatonin reduces oxidative damage induced by aluminium in rat kidney. Toxicol Lett 190:9–15

    Article  CAS  PubMed  Google Scholar 

  37. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  38. Kullisaar T, Songisepp E, Aunapuu M, et al. (2010) Complete glutathione system in probiotic Lactobacillus fermentum ME-3. Appl Biochem Microbiol 46:481–486

    Article  CAS  Google Scholar 

  39. Mikelsaar M, Zilmer M (2009) Lactobacillus fermentum ME-3—an antimicrobial and antioxidative probiotic. Microb Ecol Health Dis 21:1–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shrivastava S (2015) The influence of gingerol treatment on aluminum toxicity in rats. J Environ Pathol Toxicol Oncol 34:11–21

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China Key Program (No. 31530056), the National Natural Science Foundation of China (Nos. 31470161 and 31371721), the National Natural Science Foundation of Jiangsu Province (BK20160175), BBSRC Newton Fund Joint Centre Award, the Self-Determined Research Program of Jiangnan University (JUSRP 115A23), and Grain Industry Research Special Funds for Public Welfare Projects (No. 201513006-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengwei Tian or Wei Chen.

Ethics declarations

Conflict of Interest

The authors declare that they no conflict of interest.

Additional information

Leilei Yu and Qixiao Zhai contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Zhai, Q., Yin, R. et al. Lactobacillus plantarum CCFM639 Alleviate Trace Element Imbalance-Related Oxidative Stress in Liver and Kidney of Chronic Aluminum Exposure Mice. Biol Trace Elem Res 176, 342–349 (2017). https://doi.org/10.1007/s12011-016-0843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0843-8

Keywords

Navigation