Skip to main content
Log in

Serum Concentration of Zinc, Copper, Selenium, Manganese, and Cu/Zn Ratio in Children and Adolescents with Myopia

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of the present study was the assessment of the serum concentration of antioxidant microelements—zinc, copper, selenium, manganese, and Cu/Zn ratio in children and adolescents with myopia. Eighty-three children were examined (mean age 14.36 ± 2.49 years) with myopia. The control group was 38 persons (mean age 12.89 ± 3.84 years). Each patient had complete eye examination. The serum concentration of zinc, copper, manganese, and selenium was determined by atomic absorption spectrometry. Cu/Zn ratio, which is the indicator of the oxidative stress, was also calculated. The average serum concentration of zinc in myopic patients was significantly lower (0.865 ± 0.221 mg L−1) in comparison to the control group (1.054 ± 0.174 mg L−1). There was significantly higher Cu/Zn ratio in myopic patients (1.196 ± 0.452) in comparison to that in the control group (0.992 ± 0.203). The average serum concentration of selenium in the study group was significantly lower (40.23 ± 12.07 μg L−1) compared with that in the control group (46.00 ± 12.25 μg L−1). There were no essential differences between serum concentration of copper and manganese in the study group and the control group. Low serum concentration of zinc and selenium in myopic children may imply an association between insufficiency of these antioxidant microelements and the development of the myopia and could be the indication for zinc and selenium supplementation in the prevention of myopia. Significantly, higher Cu/Zn ratio in the study group can suggest the relationship between myopia and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Czepita D, Żejmo M, Czepita DA, Łodygowska E (2013) Myopia-epidemiology, pathogenesis, treatment. Okulistyka 1:74–78

    Google Scholar 

  2. Morgan IG, Ohno-Matsui K, Saw SM (2012) Myopia. Lancet 379:1739–1748

    Article  PubMed  Google Scholar 

  3. Bosch-Morell F, Mérida S, Navea A (2015) Oxidative stress in myopia. Oxidative Med Cell Longev 2015: 750637. doi:10.1155/2015/750637

  4. Jonas JB, Xu L (2014) Histological changes of high axial myopia. Eye 28:113–117

    Article  CAS  PubMed  Google Scholar 

  5. McBrien NA, Jobling AI, Gentle A (2009) Biomechanics of the sclera in myopia: extracellular and cellular factors. Optom Vis Sci 86:23–30

    Article  Google Scholar 

  6. Gentle A, Liu Y, Martin JE, Conti GL, McBrien NA (2003) Collagen gene expression and the altered accumulation of scleral collagen during the development of high myopia. J Biol Chem 278:16587–16594

    Article  CAS  PubMed  Google Scholar 

  7. Cassagne M, Malecaze F, Soler V (2014) Pathophysiology of myopia: nature versus nurture. J Fr Ophtalmol 37:407–414

    Article  CAS  PubMed  Google Scholar 

  8. Baldwin W (1981) A review of statistical studies of relations between myopia and ethnic, behavioral, and physiological characteristics. Am J Optom Physiol Optic 58:516–527

    Article  CAS  Google Scholar 

  9. Huibi X, Kaixun H, Qiuhua G, Yushan Z, Xiuxian H (2001) Prevention of axial elongation in myopia by the trace element zinc. Biol Trace Elem Res 79:39–47

    Article  CAS  PubMed  Google Scholar 

  10. Sukalski KA, LaBerge TP, Johnson WT (1997) In vivo oxidative modification of erythrocyte membrane proteins in copper deficiency. Free Radic Biol Med 22:835–842

    Article  CAS  PubMed  Google Scholar 

  11. Kuo S, Chesrown SE, Mellott JK, Rogers RJ, Hsu J, Nick HS (1999) In vivo architecture of the manganese superoxide dismutase promoter. J Biol Chem 274:3345–3354

    Article  CAS  PubMed  Google Scholar 

  12. Rahman MA, Rahman B, Ahmed N (2013) High blood manganese in iron-deficient children in Karachi. Public Health Nutr 16:1677–1683

    Article  PubMed  Google Scholar 

  13. Harris ED, Rayton JK, Balthrop JE, DiSilvestro RA, Garcia-de-Quevedo M (1980) Copper and the synthesis of elastin and collagen. CIBA Found Symp 79:163–182

    CAS  PubMed  Google Scholar 

  14. Rucker RB, Kosonen T, Clegg MS, Mitchell AE, Rucker BR, Uriu-Hare JY, et al. (1998) Copper, lysyl oxidase, and extracellular matrix protein cross-linking. Am J Clin Nutr 67(Suppl 5):996S–1002S

    CAS  PubMed  Google Scholar 

  15. Avetisov ES, Vinetskaia MI, Iomdina EN, Makhmudova FR, Boltaeva ZK, Tarutta EP (1991) Copper metabolism in scleral tissue and possibilities of its correction in myopia. Vestn oftalmol 107:31–34

    CAS  PubMed  Google Scholar 

  16. Shils ME, Olson JA, Shike M, Ross AC (1998) Modern nutrition in health and disease, 2nd ed., Lippincott Williams & Wilkins, 1326–1338

  17. Silverstone BZ, Syrkin N, Algur N, Berson D (1985) A metabolic aspect of high myopia. Ann Ophthalmol 17:546–551

    CAS  PubMed  Google Scholar 

  18. Silverstone BZ, Seelenfreund MH, Berson D, Grushka E, Mazover AJ, Kristol L, et al. (1986) Copper and zinc metabolism in high myopic patients with retinal detachment evaluation of the Cu/Zn ratio. Metab Pediatr Syst Ophthalmol 9:581–583

    CAS  Google Scholar 

  19. Qiang M, Zhao R (1991) A logistic regression analysis of relations between juvenile myopia and TV-watching, trace elements, and psychological characteristics. Chung Hua Yu Fang I Hsueh Tsa Chih 25:222–224

    CAS  PubMed  Google Scholar 

  20. Shiue C, Ko LS (1988) Study on serum copper and zinc levels in high myopia. Acta Ophthalmol Suppl 185:141–142

    CAS  PubMed  Google Scholar 

  21. Wang L (2009) Variation analysis of six kinds of common microelements contents of blood in myopic primary school students in Dongguan district. Cent Chin Med J 1:20–21

    Article  CAS  Google Scholar 

  22. Li J, Peng Y, Li X (2005) An analysis of microelements in patients with high myopia. Journal of Guangzhou University of Traditional Chinese Medicine 3:197–199

    Google Scholar 

  23. Huo M, Liu H, Cao J (2006) The relationship between serum zinc, copper, selenium and the visions of middle school students. Chin J Sch Health 4:318–319

    Google Scholar 

  24. Xie X, He H, Wang J, et al. (2003) Clinical significance of serum trace elements in juvenile patients with myopia. J Huaihai Med 4:279–280

    Google Scholar 

  25. Neumeister B, Besenthal I, Böhm BO (2013) Klinikleitfaden. Labordiagnostik. Urban & Fisher Verlag, München

    Google Scholar 

  26. FAO, IAEA (1996) Trace elements in human nutrition and health. World Health Organization, Geneva

    Google Scholar 

  27. Fedor M, Urban B, Bakunowicz-Łazarczyk A (2015) Rola pierwiastków śladowych w patogenezie i progresji krótkowzroczności. Okul Dypl 5:12–16

    Google Scholar 

  28. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130:1447S–1454S

    CAS  PubMed  Google Scholar 

  29. Florence TM (1995) The role of free radicals in disease. Aust N Z J Ophthalmol 23:3–7

    Article  CAS  PubMed  Google Scholar 

  30. Markiewicz R, Socha K, Borawska MH, Gutowska A (2008) Zinc and copper in diets of people living in the social nursing home in Białystok. Rocz Panstw Zakl Hig 59(4):415–420

    CAS  PubMed  Google Scholar 

  31. Charkiewicz AE, Omeljaniuk WJ, Kanicka M, Szpak A, Szpak A (2013) Average mineral content in the diet of men aged 45-54 years living in the Bialystok region. Probl Hig Epidemiol 94(4):905–909

    Google Scholar 

  32. Socha K, Borawska MH, Markiewicz R, Charkiewicz WJ (2009) An evaluation of the nutritional habits of the students of the Institute of Cosmetology and Health Care in Bialystok. Bromatol Chem Toksykol 42(3):704–708

    Google Scholar 

  33. Gapy B, Raszeja-Specht A, Bielarczyk H (2014) Role of zinc in physiological and pathological processes of the body. J Lab Diagn 50:45–52

    Google Scholar 

  34. Milne DB (1998) Copper intake and assessment of copper status. Am J Clin Nutr 67(Suppl 5):1041S–1045S

    CAS  PubMed  Google Scholar 

  35. Kolia KI, M’boh GM, Bagré I, Djaman AJ (2014) Assessment of serum iron, manganese and Cu/Zn ratio in the course of falciparum malaria among ivorian patients. Int J Biochem Res Rev 4:527–535

    Article  Google Scholar 

  36. M’boh GM, Boyvin L, Beourou S, Djaman AJ (2013) Int J Child Health Nutr 2:29–33

    Google Scholar 

  37. Bettger WJ (1993) Zinc and selenium, site-specific versus general antioxidation. Can J Physiol Pharmacol 71:721–724

    Article  CAS  PubMed  Google Scholar 

  38. Wasowicz W, Gromadzinska J, Rydzynski K, Tomczak J (2003) Selenium status of low-selenium area residents: polish experience. Toxicol Lett 137:95–101

    Article  CAS  PubMed  Google Scholar 

  39. Markiewicz R, Socha K, Borawska MH, Gutowska A (2010) Selenium in diets and serum of elderly people from the north-eastern region of Poland. Fresenius Environ Bull 19:372–377

    CAS  Google Scholar 

  40. Prabhu KS, Zamamiri-Davis F, Stewart JB, Thompson JT, Sordillo LM, Reddy CC (2002) Selenium deficiency increases the expression of inducible nitric oxide synthase in RAW 264.7 macrophages: role of nuclear factor-kappaB in up-regulation. Biochem J 366:203–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Djujić IS, Jozanov-Stankov ON, Milovac M, Jankovic V, Djermanovic V (2000) Bioavailability and possible benefits of wheat intake naturally enriched with selenium and its products. Biol Trace Elem Res 77:273–285

    Article  PubMed  Google Scholar 

  42. Skripchenko ND, Sharafetdinov KK, Plotnikova OA, Meshcheriakova VA, Mal’tsev G (2003) Effect of selenium enriched diet on lipid peroxidation in patients with diabetes mellitus type 2. Vopr Pitan 72:14–17

    CAS  PubMed  Google Scholar 

  43. Vinceti M, Mandrioli J, Borella P, Michalke B, Tsatsakis A, Finkelstein Y (2014) Selenium neurotoxicity in humans: bridging laboratory and epidemiologic studies. Toxicol Lett 230:295–303

    Article  CAS  PubMed  Google Scholar 

  44. Nagy G, Benko I, Kiraly G, Voros O, Tanczos B, Sztrik A, et al. (2015) Cellular and nephrotoxicity of selenium species. J Trace Elem Med Biol 30:160–167

    Article  CAS  PubMed  Google Scholar 

  45. Hays SM, Macey K, Nong A, Aylward LL (2014) Biomonitoring equivalents for selenium. Regul Toxicol Pharmacol 70(1):333–339

    Article  CAS  PubMed  Google Scholar 

  46. Kenfield SA, Van Blarigan EL, DuPre N, Stampfer MJ, Giovannucci LE, Chan JM (2015) er mortality. J Natl Cancer Inst 107(1):360. doi:10.1093/jnci/dju360

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was conducted with the use of equipment purchased by the Medical University of Bialystok as part of the OP DEP 2007-2013, Priority Axis I.3, contract No. POPW.01.03.00-20-022/09. The presented paper was financially supported by the Polish Ministry of Science and Higher Education (grant no. N/ST/ZB/15/001/1169 and N/ST/ZB/15/2/1169). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Fedor.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict interests.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

This article does not contain any studies with animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedor, M., Socha, K., Urban, B. et al. Serum Concentration of Zinc, Copper, Selenium, Manganese, and Cu/Zn Ratio in Children and Adolescents with Myopia. Biol Trace Elem Res 176, 1–9 (2017). https://doi.org/10.1007/s12011-016-0805-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0805-1

Keywords

Navigation