Skip to main content
Log in

Differential Tissue Accumulation of Copper, Iron, and Zinc in Bycatch Fish from the Mexican Pacific

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In order to ascertain if Cu, Fe, and Zn are differentially accumulated in fish tissues, metal concentrations were measured in the muscle and liver of bycatch fish from the states of Sinaloa (189 specimens, 7 species) and Guerrero (152 individuals, 8 species) in the Mexican Pacific Coast during March and November 2011. Additionally, metal levels were compared with the maximum allowable limits set by international legislation and contrasted with similar ichthyofauna from other regions. Liver had more elevated concentrations of Cu (Sinaloa 28.3, Guerrero 16.3 μg g−1), Fe (Sinaloa 1098, Guerrero 636 μg g−1), and Zn (Sinaloa 226, Guerrero 186 μg g−1) than the muscle in fish from both studied areas. The relative abundances of analyzed metals in both tissues was Fe > Zn > Cu. As far as limits set by international legislation (Australia, India, New Zealand, Zambia), measured concentrations of Cu in the edible portion of fish were not found to be above the set values. In the case of Zn, the maximum allowable limits set by international legislation were exceeded by the Peruvian mojarra Diapterus peruvianus from Guerrero state (Mexican Pacific). No limits exist for Fe in the edible portion of fishery products in the national and international legislations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. WHO/FAO/IAEA (1996) Trace elements in human nutrition and health. World Health Organization, Geneva

    Google Scholar 

  2. Perelló G, Martí-Cid R, Llobet JM, Domingo JL (2008) Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. J Agric Food Chem 56(23):11262–11269

    Article  PubMed  Google Scholar 

  3. Mendil D, Demirci Z, Tuzen M, Soylak M (2010) Seasonal investigation of trace element contents in commercially valuable fish species from the Black Sea, Turkey. Food Chem Toxicol 48(3):865–870

  4. Ordiano-Flores A, Rosiles-Martínez R, Galván-Magaña F (2012) Biomagnification of mercury and its antagonistic interaction with selenium in yellowfin tuna Thunnus albacares in the trophic web of Baja California Sur, Mexico. Ecotoxicol Saf 86:182–187

    Article  CAS  Google Scholar 

  5. Ruelas-Inzunza J, Sánchez-Osuna K, Amezcua-Martínez F, Spanopoulos-Zarco P, Manzano-Luna L (2012) Mercury levels in selected bycatch fish species from industrial shrimp-trawl fishery in the SE Gulf of California. Mar Pollut Bull 64:2857–2859

    Article  CAS  PubMed  Google Scholar 

  6. Spanopoulos-Zarco P, Ruelas-Inzunza J, Jara-Marini ME, Meza-Montenegro M (2015) Bioaccumulation of arsenic and selenium in bycatch fishes Diapterus peruvianus, Pseudupeneus grandisquamis and Trachinotus kennedyi from shrimp trawling in the continental shelf of Guerrero, México. Environ Monit Assess 187:700

    Article  PubMed  Google Scholar 

  7. Madrid-Vera J, Amezcua F, Morales-Bojórquez E (2007) An assessment approach to estimate biomass of fish communities from bycatch data in a tropical shrimp-trawl fishery. Fish Res 83:81–89

    Article  Google Scholar 

  8. Alverson DL, Freeberg MH, Pope JG, Murawski SA (1994) A global assessment of fisheries bycatch and discards. FAO Fish Tech Pap 339:1–233

    Google Scholar 

  9. Rábago-Quiroz CH, López-Martínez J, Herrera-Valdivia E, Nevarez-Martínez MO, Rodríguez-Romero J (2008) Population dynamics and spatial distribution of flatfish species in shrimp trawl bycatch in the Gulf of California. Hydrobiol 18(3):177–188

    Google Scholar 

  10. Kumar B, Mukherjee DP, Kumar S, Mishra M, Prakash D, Singh SK, Sharma CS (2011) Bioaccumulation of heavy metals in muscle tissue of fishes from selected aquaculture ponds in East Kolkata wetlands. Annals Biol Res 2(5):125–134

    Google Scholar 

  11. Förstner U, Wittmann GTW (1983) Metal pollution in the aquatic environment. Springer-Verlag, Berlin

    Google Scholar 

  12. Callender E (2005) Heavy metals in the environment-historical trends. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier, Amsterdam, pp. 67–106

    Google Scholar 

  13. Páez-Osuna F, Osuna-Martínez C (2015) Bioavailability of cadmium, copper, mercury, lead and zinc in subtropical coastal lagoons from the southeast Gulf of California using mangrove oysters (Crassostrea corteziensis and Crassostrea palmula). Arch Environ Contam Toxicol 68:305–316

    Article  PubMed  Google Scholar 

  14. Páez Osuna F, Ramírez-Reséndiz G, Ruiz-Fernández AC, Soto-Jiménez MF (2007) La contaminación por nitrógeno y fósforo en Sinaloa: flujos, fuentes, efectos y opciones de manejo. In: Páez-Osuna F (ed) Serie Lagunas Costeras de Sinaloa. El Colegio de Sinaloa, UNAM, SEMARNAT, CONACYT, Mexico pp. 71–81

  15. García E (1973) Modificaciones al sistema de clasificación climática de Köppen para adaptarla a las condiciones de la República Mexicana. Instituto de Geografía UNAM, México

  16. Hernández-Covarrubias V, Chávez-Herrera D, Melchor-Aragón J, Villegas-Hernández F, Muñoz-Rubí H, Osuna-Zamora M (2012) Fauna de acompañamiento de camarón en la ribera adyacente a la boca sur de Santa María la Reforma Sinaloa. Instituto Nacional de la Pesca, Mexico

  17. Carvalho FP, Fowler SW, Gónzalez-Farías F, Mee LD, Readman JW (1996) Agrochemical residues in the Altata-Ensenada del Pabellón coastal lagoon (Sinaloa, México): a need for integrated coastal zone management. Int J Environ Health Res 6(3):209–220

    Article  CAS  Google Scholar 

  18. www.inegi.org.mx

  19. Ortiz-Solano L, Granados-Barba A, Solís-Weiss V, García-Salgado MA (2005) Environmental evaluation and development problems of the Mexican coastal zone. Ocean Coast Manag 48:161–176

    Article  Google Scholar 

  20. Pentreath RJ (1977) The accumulation from water of 65Zn, 54Mn, 58Co and 59Fe by the mussel, Mytilus edulis. J Mar Biol Assoc UK 53:127–143

    Article  Google Scholar 

  21. AL-Weher SM (2008) Levels of heavy metal Cd, Cu and Zn in three fish species collected from the northern Jordan Valley, Jordan. Jordan J Biol Sci 1(1):41–46

    Google Scholar 

  22. Nemesok JG, Huphes ZGM (1988) The effects of copper sulphate on some biochemical parameters of rainbow trout. Environ Pollut 49:77–85

    Article  Google Scholar 

  23. Ozden O, Erkan N, Ulusoy S (2010) Determination of mineral composition in three commercial fish species (Solea solea, Mulus surmuletus, and Merlangius merlangus). Environ Monit Assess 170(1–4):353–363

    Article  PubMed  Google Scholar 

  24. MJ K (2001) Practical handbbok of marine science. CRC Press, Boca Raton

    Google Scholar 

  25. Abbas HH, Zaghloul KH, Mousa MA (2002) Effect of some heavy metal pollutants on some biochemical and histopathological changes in blue tilapia; Oreochromis aureus. Egyp J Agric Res 80:1395–1411

    Google Scholar 

  26. Salanki I, Katalin VB, Berta E (1982) Heavy metals in animals of Lake Balaton. Water Res 16(7):1147–1152

    Article  CAS  Google Scholar 

  27. Nauen C (1983) Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fish Circ 764:1–102

    Google Scholar 

  28. Olmedo P, Hernández AF, Pla A, Femia P, Navas-Acien A, Gil F (2013) Determination of essential elements (copper, manganese, selenium and zinc) in fish and shellfish samples. Risk and nutritional assessment and mercury selenium balance. Food Chem Toxicol 62:299–307

    Article  CAS  PubMed  Google Scholar 

  29. Rivas A, Peña-Rivas L, Ortega E, López-Martínez C, Olea-Serrano F, Lorenzo ML (2014) Mineral element contents in commercially valuable fish species in Spain. Sci World J 1–7

  30. Daniel EO, Ugwueze AU, Igbegu HE (2013) Microbiological quality and some heavy metals analysis of smoked fish sold in Benin City, Edo State, Nigeria. World J Fish and Mar Sci 5(3):239–243

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge partial financial support by the Ministry of Public Education (Project REDES PROMEP/103.5/13/9335). We thank G. Ramírez-Reséndiz for map elaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ruelas-Inzunza.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spanopoulos-Zarco, P., Ruelas-Inzunza, J., Aramburo-Moran, I. et al. Differential Tissue Accumulation of Copper, Iron, and Zinc in Bycatch Fish from the Mexican Pacific. Biol Trace Elem Res 176, 201–206 (2017). https://doi.org/10.1007/s12011-016-0800-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0800-6

Keywords

Navigation