Skip to main content

Advertisement

Log in

Exposure to Zinc Oxide Nanoparticles Induces Neurotoxicity and Proinflammatory Response: Amelioration by Hesperidin

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles (ZnONPs) are widely used in food packaging and may enter the body directly if exposed. Hereby, in this study, the oral administration was selected as the route of exposure for rats to nanoparticles and the effect of hesperidin (HSP, 100 mg/kg bwt) was evaluated on ZnONP (600 mg/kg bwt)-induced neurotoxicity in rats. ZnONPs were characterized using transmission electron microscopy. Neurotoxicity was observed as seen by elevation in serum inflammatory markers including tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1β), interleukin-6 (IL-6), C-reactive protein (CRP), and activities of catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione (GSH) content in rat brains. Pretreatment of rats with HSP in ZnONP-treated group elevated activities of antioxidant enzymes. HSP also caused decrease in TNF-α, IL-1β, IL-6, and CRP levels which was higher in the ZnONP-treated group. The results suggest that HSP augments antioxidant defense with anti-inflammatory response against ZnONP-induced neurotoxicity. The increased antioxidant enzymes enhance the antioxidant potential to reduce oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gonzalez-Estrella J, Puyol D, Sierra-Alvarez R, Field JA (2015) Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis. J Hazard Mater 283:755–763. doi:10.1016/j.jhazmat.2014.10.030

    Article  CAS  PubMed  Google Scholar 

  2. Zukiene R, Snitka V (2015) Zinc oxide nanoparticle and bovine serum albumin interaction and nanoparticles influence on cytotoxicity in vitro. Colloids Surf B: Biointerfaces 135:316–323. doi:10.1016/j.colsurfb.2015.07.054

    Article  CAS  PubMed  Google Scholar 

  3. Mallevre F, Fernandes TF, Aspray TJ (2014) Silver, zinc oxide and titanium dioxide nanoparticle ecotoxicity to bioluminescent pseudomonas putida in laboratory medium and artificial wastewater. Environ Pollut 195:218–225. doi:10.1016/j.envpol.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  4. Yang X, Jiang MZ (2014) Research progress on biological toxicity of zinc oxide nanoparticle and its mechanism. Zhejiang Da Xue Xue Bao Yi Xue Ban 43(2):218–226

    CAS  PubMed  Google Scholar 

  5. Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS (2012) Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 125(2):462–472. doi:10.1093/toxsci/kfr319

    Article  CAS  PubMed  Google Scholar 

  6. Lee CM, Jeong HJ, Kim DW, Sohn MH, Lim ST (2012) The effect of fluorination of zinc oxide nanoparticles on evaluation of their biodistribution after oral administration. Nanotechnology 23(20):205102. doi:10.1088/0957-4484/23/20/205102

    Article  PubMed  Google Scholar 

  7. Han D, Tian Y, Zhang T, Ren G, Yang Z (2011) Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats. Int J Nanomedicine 6:1453–1461. doi:10.2147/IJN.S18507

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shim KH, Hulme J, Maeng EH, Kim MK, An SS (2014) Analysis of zinc oxide nanoparticles binding proteins in rat blood and brain homogenate. Int J Nanomedicine 9(Suppl 2):217–224. doi:10.2147/IJN.S58204

    PubMed  PubMed Central  Google Scholar 

  9. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health, Part A: Tox Hazard Subst Environ Eng 41(12):2699–2711. doi:10.1080/10934520600966177

    Article  CAS  Google Scholar 

  10. Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roque P (2014) Neurotoxicants are in the air: convergence of human, animal, and in vitro studies on the effects of air pollution on the brain. Biomed Res Int 2014:736385. doi:10.1155/2014/736385

    PubMed  PubMed Central  Google Scholar 

  11. Akhil K, Chandran P, Sudheer Khan S (2015) Influence of humic acid on the stability and bacterial toxicity of zinc oxide nanoparticles in water. J Photochem Photobiol B 153:289–295. doi:10.1016/j.jphotobiol.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  12. Giovanni M, Tay CY, Setyawati MI, Xie J, Ong CN, Fan R, Yue J, Zhang L, Leong DT (2015) Toxicity profiling of water contextual zinc oxide, silver, and titanium dioxide nanoparticles in human oral and gastrointestinal cell systems. Environ Toxicol 30(12):1459–1469. doi:10.1002/tox.22015

    Article  CAS  PubMed  Google Scholar 

  13. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170. doi:10.1038/nbt875

    Article  CAS  PubMed  Google Scholar 

  14. Danielsen PH, Loft S, Jacobsen NR, Jensen KA, Autrup H, Ravanat JL, Wallin H, Moller P (2010) Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter. Toxicol Sci 118(2):574–585. doi:10.1093/toxsci/kfq290

    Article  CAS  PubMed  Google Scholar 

  15. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Srivastav AK, Kumar M, Ansari NG, Jain AK, Shankar J, Arjaria N, Jagdale P, Singh D (2016) A comprehensive toxicity study of zinc oxide nanoparticles versus their bulk in Wistar rats: toxicity study of zinc oxide nanoparticles. Hum Exp Toxicol. doi:10.1177/0960327116629530

    PubMed  Google Scholar 

  17. Ko JW, Hong ET, Lee IC, Park SH, Park JI, Seong NW, Hong JS, Yun HI, Kim JC (2015) Evaluation of 2-week repeated oral dose toxicity of 100 nm zinc oxide nanoparticles in rats. Lab Anim Res 31(3):139–147. doi:10.5625/lar.2015.31.3.139

    Article  PubMed  PubMed Central  Google Scholar 

  18. Choi J, Kim H, Kim P, Jo E, Kim HM, Lee MY, Jin SM, Park K (2015) Toxicity of zinc oxide nanoparticles in rats treated by two different routes: single intravenous injection and single oral administration. J Toxic Environ Health A 78(4):226–243. doi:10.1080/15287394.2014.949949

    Article  CAS  Google Scholar 

  19. Hosseinimehr SJ, Jalayer Z, Naghshvar F, Mahmoudzadeh A (2012) Hesperidin inhibits cyclophosphamide-induced tumor growth delay in mice. Integr Cancer Ther 11(3):251–256. doi:10.1177/1534735412448959

    Article  CAS  PubMed  Google Scholar 

  20. Mahmoud AM, Ashour MB, Abdel-Moneim A, Ahmed OM (2012) Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complicat 26(6):483–490. doi:10.1016/j.jdiacomp.2012.06.001

    Article  PubMed  Google Scholar 

  21. Koyuncu H, Berkarda B, Baykut F, Soybir G, Alatli C, Gul H, Altun M (1999) Preventive effect of hesperidin against inflammation in CD-1 mouse skin caused by tumor promoter. Anticancer Res 19(4B):3237–3241

    CAS  PubMed  Google Scholar 

  22. Crespo ME, Galvez J, Cruz T, Ocete MA, Zarzuelo A (1999) Anti-inflammatory activity of diosmin and hesperidin in rat colitis induced by TNBS. Planta Med 65(7):651–653. doi:10.1055/s-2006-960838

    Article  CAS  PubMed  Google Scholar 

  23. Zhang B, Chen T, Chen Z, Wang M, Zheng D, Wu J, Jiang X, Li X (2012) Synthesis and anti-hyperglycemic activity of hesperidin derivatives. Bioorg Med Chem Lett 22(23):7194–7197. doi:10.1016/j.bmcl.2012.09.049

    Article  CAS  PubMed  Google Scholar 

  24. Hewage SR, Piao MJ, Kang KA, Ryu YS, Han X, Oh MC, Jung U, Kim IG, Hyun JW (2016) Hesperidin attenuates ultraviolet B-induced apoptosis by mitigating oxidative stress in human keratinocytes. Biomol Ther (Seoul). doi:10.4062/biomolther.2015.139

    Google Scholar 

  25. Ohara T, Muroyama K, Yamamoto Y, Murosaki S (2016) Oral intake of a combination of glucosyl hesperidin and caffeine elicits an anti-obesity effect in healthy, moderately obese subjects: a randomized double-blind placebo-controlled trial. Nutr J 15(1):6. doi:10.1186/s12937-016-0123-7

    Article  PubMed  PubMed Central  Google Scholar 

  26. Oguzturk H, Ciftci O, Cetin A, Kaya K, Disli OM, Turtay MG, Gurbuz S, Basak N (2016) Beneficial effects of hesperidin following cis-diamminedichloroplatinum-induced damage in heart of rats. Niger J Clin Pract 19(1):99–103. doi:10.4103/1119-3077.173707

    Article  CAS  PubMed  Google Scholar 

  27. Ahmadi A, Shadboorestan A (2016) Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr Cancer 68(1):29–39. doi:10.1080/01635581.2015.1078822

    Article  CAS  PubMed  Google Scholar 

  28. Polat N, Ciftci O, Cetin A, Yilmaz T (2016) Toxic effects of systemic cisplatin on rat eyes and the protective effect of hesperidin against this toxicity. Cutan Ocul Toxicol 35(1):1–7. doi:10.3109/15569527.2014.999080

    Article  CAS  PubMed  Google Scholar 

  29. Kaur G, Tirkey N, Chopra K (2006) Beneficial effect of hesperidin on lipopolysaccharide-induced hepatotoxicity. Toxicology 226(2–3):152–160. doi:10.1016/j.tox.2006.06.018

    Article  CAS  PubMed  Google Scholar 

  30. Pari L, Shagirtha K (2012) Hesperetin protects against oxidative stress related hepatic dysfunction by cadmium in rats. Exp Toxicol Pathol 64(5):513–520. doi:10.1016/j.etp.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  31. Ahmad ST, Arjumand W, Nafees S, Seth A, Ali N, Rashid S, Sultana S (2012) Hesperidin alleviates acetaminophen induced toxicity in Wistar rats by abrogation of oxidative stress, apoptosis and inflammation. Toxicol Lett 208(2):149–161. doi:10.1016/j.toxlet.2011.10.023

    Article  CAS  PubMed  Google Scholar 

  32. Yeh YH, Hsieh YL, Lee YT (2013) Effects of yam peel extract against carbon tetrachloride-induced hepatotoxicity in rats. J Agric Food Chem 61(30):7387–7396. doi:10.1021/jf401864y

    Article  CAS  PubMed  Google Scholar 

  33. Derrell C (1996) Guide for the care and use of laboratory animals. Institute of Laboratory Animal Resources. National Academy Press, Washington, D.C.

    Google Scholar 

  34. Faddah LM, Abdel Baky NA, Al-Rasheed NM, Al-Rasheed NM, Fatani AJ, Atteya M (2012) Role of quercetin and arginine in ameliorating nano zinc oxide-induced nephrotoxicity in rats. BMC Complement Altern Med 12:60. doi:10.1186/1472-6882-12-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  36. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  37. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  38. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169

    CAS  PubMed  Google Scholar 

  39. Factor VM, Kiss A, Woitach JT, Wirth PJ, Thorgeirsson SS (1998) Disruption of redox homeostasis in the transforming growth factor-alpha/c-myc transgenic mouse model of accelerated hepatocarcinogenesis. J Biol Chem 273(25):15846–15853

    Article  CAS  PubMed  Google Scholar 

  40. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  PubMed  Google Scholar 

  41. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500

    CAS  PubMed  Google Scholar 

  42. Muller KH, Kulkarni J, Motskin M, Goode A, Winship P, Skepper JN, Ryan MP, Porter AE (2010) pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. ACS Nano 4(11):6767–6779. doi:10.1021/nn101192z

    Article  CAS  PubMed  Google Scholar 

  43. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19(29):295103. doi:10.1088/0957-4484/19/29/295103

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vandebriel RJ, De Jong WH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71. doi:10.2147/NSA.S23932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cho WS, Duffin R, Howie SE, Scotton CJ, Wallace WA, Macnee W, Bradley M, Megson IL, Donaldson K (2011) Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol 8:27. doi:10.1186/1743-8977-8-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cho WS, Duffin R, Poland CA, Duschl A, Oostingh GJ, Macnee W, Bradley M, Megson IL, Donaldson K (2012) Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology 6(1):22–35. doi:10.3109/17435390.2011.552810

    Article  CAS  PubMed  Google Scholar 

  47. Li CH, Liao PL, Shyu MK, Liu CW, Kao CC, Huang SH, Cheng YW, Kang JJ (2012) Zinc oxide nanoparticles-induced intercellular adhesion molecule 1 expression requires Rac1/Cdc42, mixed lineage kinase 3, and c-Jun N-terminal kinase activation in endothelial cells. Toxicol Sci 126(1):162–172. doi:10.1093/toxsci/kfr331

    Article  PubMed  Google Scholar 

  48. Li CH, Shen CC, Cheng YW, Huang SH, Wu CC, Kao CC, Liao JW, Kang JJ (2012) Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 6(7):746–756. doi:10.3109/17435390.2011.620717

    Article  CAS  PubMed  Google Scholar 

  49. Roy R, Tripathi A, Das M, Dwivedi PD (2011) Cytotoxicity and uptake of zinc oxide nanoparticles leading to enhanced inflammatory cytokines levels in murine macrophages: comparison with bulk zinc oxide. J Biomed Nanotechnol 7(1):110–111

    Article  CAS  PubMed  Google Scholar 

  50. Hsiao IL, Huang YJ (2011) Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. Sci Total Environ 409(7):1219–1228. doi:10.1016/j.scitotenv.2010.12.033

    Article  CAS  PubMed  Google Scholar 

  51. Garg A, Garg S, Zaneveld LJ, Singla AK (2001) Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother Res 15(8):655–669

    Article  CAS  PubMed  Google Scholar 

  52. Omar HA, Mohamed WR, Arafa el SA, Shehata BA, Sherbiny GA, Arab HH, Elgendy AN (2016) Hesperidin alleviates cisplatin-induced hepatotoxicity in rats without inhibiting its antitumor activity. Pharmacol Rep 68(2):349–356. doi:10.1016/j.pharep.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  53. Justin Thenmozhi A, Raja TR, Janakiraman U, Manivasagam T (2015) Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer’s disease in Wistar rats. Neurochem Res 40(4):767–776. doi:10.1007/s11064-015-1525-1

    Article  PubMed  Google Scholar 

  54. Iranshahi M, Rezaee R, Parhiz H, Roohbakhsh A, Soltani F (2015) Protective effects of flavonoids against microbes and toxins: the cases of hesperidin and hesperetin. Life Sci 137:125–132. doi:10.1016/j.lfs.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  55. Lee HJ, Lee WJ, Chang SE, Lee GY (2015) Hesperidin, a popular antioxidant inhibits melanogenesis via Erk1/2 mediated MITF degradation. Int J Mol Sci 16(8):18384–18395. doi:10.3390/ijms160818384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim GD (2015) Hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways. Prev Nutr Food Sci 20(4):221–229. doi:10.3746/pnf.2015.20.4.221

    Article  PubMed  PubMed Central  Google Scholar 

  57. Khedr NF, Khalil RM (2015) Effect of hesperidin on mice bearing Ehrlich solid carcinoma maintained on doxorubicin. Tumour Biol 36(12):9267–9275. doi:10.1007/s13277-015-3655-0

    Article  CAS  PubMed  Google Scholar 

  58. Khan MH, Parvez S (2015) Hesperidin ameliorates heavy metal induced toxicity mediated by oxidative stress in brain of Wistar rats. J Trace Elem Med Biol 31:53–60. doi:10.1016/j.jtemb.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  59. Kaya K, Ciftci O, Cetin A, Dogan H, Basak N (2015) Hesperidin protects testicular and spermatological damages induced by cisplatin in rats. Andrologia 47(7):793–800. doi:10.1111/and.12332

    Article  CAS  PubMed  Google Scholar 

  60. Martinez RM, Pinho-Ribeiro FA, Steffen VS, Caviglione CV, Vignoli JA, Baracat MM, Georgetti SR, Verri WA Jr, Casagrande R (2015) Hesperidin methyl chalcone inhibits oxidative stress and inflammation in a mouse model of ultraviolet B irradiation-induced skin damage. J Photochem Photobiol B 148:145–153. doi:10.1016/j.jphotobiol.2015.03.030

    Article  CAS  PubMed  Google Scholar 

  61. Tsou TC, Yeh SC, Tsai FY, Lin HJ, Cheng TJ, Chao HR, Tai LA (2010) Zinc oxide particles induce inflammatory responses in vascular endothelial cells via NF-kappaB signaling. J Hazard Mater 183(1–3):182–188. doi:10.1016/j.jhazmat.2010.07.010

    Article  CAS  PubMed  Google Scholar 

  62. Fine JM, Gordon T, Chen LC, Kinney P, Falcone G, Beckett WS (1997) Metal fume fever: characterization of clinical and plasma IL-6 responses in controlled human exposures to zinc oxide fume at and below the threshold limit value. J Occup Environ Med 39(8):722–726

    Article  CAS  PubMed  Google Scholar 

  63. Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, Jiao Z (2009) Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 20(11):115101. doi:10.1088/0957-4484/20/11/115101

    Article  PubMed  Google Scholar 

  64. Liu XX, Yu DD, Chen MJ, Sun T, Li G, Huang WJ, Nie H, Wang C, Zhang YX, Gong Q, Ren BX (2015) Hesperidin ameliorates lipopolysaccharide-induced acute lung injury in mice by inhibiting HMGB1 release. Int Immunopharmacol 25(2):370–376. doi:10.1016/j.intimp.2015.02.022

    Article  CAS  PubMed  Google Scholar 

  65. Kim NH, Oh MK, Park HJ, Kim IS (2010) Auranofin, a gold(I)-containing antirheumatic compound, activates Keap1/Nrf2 signaling via Rac1/iNOS signal and mitogen-activated protein kinase activation. J Pharmacol Sci 113(3):246–254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research project was supported by the “Research Center of the Center for Female Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia. Also, we would like to thank Ms. Jennifer Hudson and Ms. Sarah Paulson for their help in completion of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabah Ansar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansar, S., Abudawood, M., Hamed, S.S. et al. Exposure to Zinc Oxide Nanoparticles Induces Neurotoxicity and Proinflammatory Response: Amelioration by Hesperidin. Biol Trace Elem Res 175, 360–366 (2017). https://doi.org/10.1007/s12011-016-0770-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0770-8

Keywords

Navigation