Skip to main content

Advertisement

Log in

The Distribution of Elements in 48 Canine Compact Bone Types Using Handheld X-Ray Fluorescence

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A major question when we talk about the elements in the bone is whether all bones contain the same elements. To answer this question, this study was designed for determination of the elemental levels in 48 various canine compact bones using handheld X-ray fluorescence technique. From a total of 26 elements that could be detected, only 13 elements were found in all 48 bones. The sternum and os penis were significantly different from the other bones in that they contained the highest number of elements. The ratio of Ca and P was significantly different when comparing certain bones: there was a higher Ca/P ratio in the patella (right), calcaneus (right and left), and sternum compared with a lower ratio in the radius (left), rib (left), phalanx (left forelimb), and carpus (left). These results are the first to demonstrate that different types of bones have different elemental profiles, even for major elements such as Ca and P. Moreover, the Ca/P ratio was also different between bone types. This data is important for the selection of bones appropriate to the element studied. In addition, the results proved that the elements were not equally distributed in every bone in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akers RM, Denbow DM (2014) Bones and skeletal system. In: Akers RM, Denbow DM (eds) Anatomy and physiology of domestic animals, 2 edn. Wiley-Blackwell, Iowa, pp. 133–168

    Google Scholar 

  2. Gilbert SF (2000) Developmental biology. Sinauer Associates Sunderland (MA)

  3. Wiechuła D, Jurkiewicz A, Loska K (2008) An assessment of natural concentrations of selected metals in the bone tissues of the femur head. Sci Total Environ 406(1–2):161–167. doi:10.1016/j.scitotenv.2008.07.068

    Article  PubMed  Google Scholar 

  4. Dermience M, Lognay G, Mathieu F, Goyens P (2015) Effects of thirty elements on bone metabolism. J Trace Elem Med Biol 32:86–106

    Article  CAS  PubMed  Google Scholar 

  5. Yamaguchi M, Sugii K, Okada S (1982) Tin decreases femoral calcium independently of calcium homeostasis in rats. Toxicol Lett 10(1):7–10

    Article  CAS  PubMed  Google Scholar 

  6. Tal E, Guggnheim K (1965) Effect of manganese on calcification of bone. Biochem J 95:94–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen QZ, Wong CT, Lu WW, Cheung KM, Leong JC, Luk KD (2004) Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo. Biomaterials 25(18):4243–4254

    Article  CAS  PubMed  Google Scholar 

  8. Morseth B, Emaus N, Jørgensen L (2011) Physical activity and bone: the importance of the various mechanical stimuli for bone mineral density. Rev Norsk Epidemiol 20(2):173–178

    Google Scholar 

  9. Zhao T, Chen T, Qiu Y, Zou X, Li X, Su M, Yan C, Zhao A, Jia W (2009) Trace element profiling using inductively coupled plasma mass spectrometry and its application in an osteoarthritis study. Anal Chem 81(9):3683–3692

    Article  CAS  PubMed  Google Scholar 

  10. Yazar M, Sarban S, Kocyigit A, Isikan UE (2005) Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis. Biol Trace Elem Res 106(2):123–132

    Article  CAS  PubMed  Google Scholar 

  11. Nganvongpanit K, Buddhachat K, Brown JL (2015) Comparison of bone tissue elements between normal and osteoarthritic pelvic bones in dogs. Biol Trace Elem Res. doi:10.1007/s12011-015-0556-4

    Google Scholar 

  12. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  13. Palacios C (2006) The role of nutrients in bone health, from A to Z. Crit Rev Food Sci Nutr 46(8):621–628

    Article  CAS  PubMed  Google Scholar 

  14. Gonzalez-Rodriguez J, Fowler G (2013) A study on the discrimination of human skeletons using X-ray fluorescence and chemometric tools in chemical anthropology. Forensic Sci Int 231(1–3):407.e401–407.e40S

    Google Scholar 

  15. Christensen AM, Smith MA, Thomas RM (2012) Validation of X-ray fluorescence spectrometry for determining osseous or dental origin of unknown material. J Forensic Sci 57(1):47–51

    Article  CAS  PubMed  Google Scholar 

  16. Zhang H, Nie HT, Wang Q, Wang ZY, Zhang YL, Guo RH, Wang F (2015) Trace element concentrations and distributions in the main body tissues and the net requirements for maintenance and growth of Dorper × Hu lambs. J Anim Sci 93(5):2471–2481. doi:10.2527/jas.2014-8306

    Article  CAS  PubMed  Google Scholar 

  17. Pemmer B, Roschger A, Wastl A, Hofstaetter JG, Wobrauschek P, Simon R, Thaler HW, Roschger P, Klaushofer K, Streli C (2013) Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue. Bone 57(1):184–193. doi:10.1016/j.bone.2013.07.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nganvongpanit K, Buddhachat K, Brown JL, Klinhom S, Pitakarnnop T, Mahakkanukrauh P (2016) Preliminary study to test the feasibility of sex identification of human (Homo sapiens) bones based on differences in elemental profiles determined by handheld X-ray fluorescence. Biol Trace Elem Res. doi:10.1007/s12011-016-0625-3

    Google Scholar 

  19. Zimmerman HA, Schultz JJ, Sigman ME (2015) Preliminary validation of handheld X-ray fluorescence spectrometry: distinguishing osseous and dental tissue from nonbone material of similar chemical composition. J Forensic Sci 60(2):382–390. doi:10.1111/1556-4029.12690

    Article  CAS  PubMed  Google Scholar 

  20. Carvalho ML, Casaca C, Marques JP, Pinheiro T, Cunha AS (2001) Human teeth elemental profiles measured by synchrotron x-ray fluorescence: dietary habits and enviromental influence. X-Ray Spectrom 30:190–193

    Article  CAS  Google Scholar 

  21. Nganvongpanit K, Brown JL, Buddhachat K, Somgird C, Thitaram C (2015) Elemental analysis of Asian elephant (Elephas maximus) teeth using X-ray fluorescence and a comparison to other species. Biol Trace Elem Res 170:94–105. doi:10.1007/s12011-015-0445-x

    Article  PubMed  Google Scholar 

  22. Kierdorf U, Stoffels D, Kierdorf H (2014) Element concentrations and element ratios in antler and pedicle bone of yearling red deer (Cervus elaphus) stags—a quantitative X-ray fluorescence study. Biol Trace Elem Res 162(1–3):124–133

    Article  CAS  PubMed  Google Scholar 

  23. West M, Ellis AT, Potts PJ, Streli C, Vanhoof C, Wegrzynek D, Wobrauschek P (2013) 2013 atomic spectrometry update—a review of advances in X-ray fluorescence spectrometry. J Anal At Spectrom 28:1544–1590. doi:10.1039/C3JA90046K

    Article  CAS  Google Scholar 

  24. Zimmerman HA, Meizel-Lambert CJ, Schultz JJ, Sigman ME (2015) Chemical differentiation of osseous, dental, and non-skeletal materials in forensic anthropology using elemental analysis. Sci Justice 55(2):131–138. doi:10.1016/j.scijus.2014.11.003

    Article  PubMed  Google Scholar 

  25. Nie LH, Sanchez S, Newton K, Grodzins L, Cleveland RO, Weisskopf MG (2011) In vivo quantification of lead in bone with a portable x-ray fluorescence system–methodology and feasibility. Phys Med Biol 56(3):N39–N51. doi:10.1088/0031-9155/56/3/N01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karaaslan F, Mutlu M, Mermerkaya MU, Karaoğlu S, Saçmaci Ş, Kartal Ş (2014) Comparison of bone tissue trace-element concentrations and mineral density in osteoporotic femoral neck fractures and osteoarthritis. Clin Interv Aging 18(9):1375–1382

    Article  Google Scholar 

  27. Fischer A, Wiechuła D, Przybyła-Misztela C (2013) Changes of concentrations of elements in deciduous teeth with age. Biol Trace Elem Res 154(3):427–432. doi:10.1007/s12011-013-9744-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He B, Huang S, Zhang C, Jing J, Hao Y, Xiao L, Zhou X (2011) Mineral densities and elemental content in different layers of healthy human enamel with varying teeth age. Arch Oral Biol 56(10):997–1004. doi:10.1016/j.archoralbio.2011.02.015

    Article  CAS  PubMed  Google Scholar 

  29. Beattie JH, Avenell A (1992) Trace element nutrition and bone metabolism. Nutr Res Rev 5(1):167–188

    Article  CAS  PubMed  Google Scholar 

  30. Amr MA (2011) Trace elements in Egyptian teeth. IJPS 6(27):6241–6245

    CAS  Google Scholar 

  31. Brodziak-Dopierała B, Kwapuliński J, Sobczyk K, Wiechuła D (2013) Distribution of magnesium, calcium, sodium and potassium in tissues of the hip joint. Magnes Res 26(3):125–131. doi:10.1684/mrh.2013.0348

    PubMed  Google Scholar 

  32. Rasmussen KL, Skytte L, Pilekær C, Lauritsen A, Boldsen JL, Leth PM, Thomsen PO (2013) The distribution of mercury and other trace elements in the bones of two human individuals from medieval Denmark—the chemical life history hypothesis. Herit Sci 1(10):e1–e13. doi:10.1186/2050-7445-1-10

    Google Scholar 

  33. Tzaphidou M, Zaichick V (2004) Sex and age related Ca/P ration in cortical bone of iliac crest of healthy humans. J Radioanal Nucl Chem 259(2):347–349

    Article  Google Scholar 

  34. Dickerson JWT (1962) The effect of development on the composition of a long bone of the pig, rat and fowl. Biochem J 82(1):47–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Legros R, Balmin N, Bonel G (1987) Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41(3):137–144

    Article  CAS  PubMed  Google Scholar 

  36. Canepari S, Perrino C, Astolfi ML, Catrambone M, Perret D (2009) Determination of soluble ions and elements in ambient air suspended particulate matter: inter-technique comparison of XRF, IC and ICP for sample-by-sample quality control. Talanta 77(5):1821–1829. doi:10.1016/j.talanta.2008.10.029

    Article  CAS  PubMed  Google Scholar 

  37. Kourkoumelis N, Balatsoukas I, Tzaphlidou M (2012) Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by auger and energy dispersive X-ray spectroscopy. J Biol Phys 38(2):279–291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research funding for the Excellence Center in Osteology Research and Training Center (ORTC) was provided by Chiang Mai University (CMU) through the Research Administration Office.

Authors’ Contributions

K.N. designed and conducted all the experiments. K.B. assisted in the experiments and in support of information for discussion. S.K. and P.P performed XRF on bone samples. K.N and K.B. assisted in discussions and writing of the manuscript. All authors have read and accepted the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korakot Nganvongpanit.

Ethics declarations

No ethical approval was required for this study.

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nganvongpanit, K., Buddhachat, K., Piboon, P. et al. The Distribution of Elements in 48 Canine Compact Bone Types Using Handheld X-Ray Fluorescence. Biol Trace Elem Res 174, 93–104 (2016). https://doi.org/10.1007/s12011-016-0698-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0698-z

Keywords

Navigation