Skip to main content
Log in

Role of Zinc Supplementation in Testicular and Epididymal Damages in Diabetic Rat: Involvement of Nrf2, SOD1, and GPX5

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc (Zn) is one of the most important trace elements required for several biological processes. Diabetes negatively affects many organs, and diabetic patients are often hypozincemic. The present study aims to investigate the role of Zn supplementation in the testes, epididymis, and sperms of streptozotocin (STZ)-induced diabetic rat. Serum, testicular, and sperm Zn contents were found to be altered in diabetic rat. Biochemical, histopathological, and protein expression profiles were determined to decipher the role of Zn in protecting the cellular perturbations. Further, histopathological analyses of testes and epididymis showed deranged architecture along with other noted abnormalities. Diabetic testes showed decreased Nrf2, HO-1, SOD1, PCNA, and Bcl-2 expressions whereas increased COX-2, NF-κB, MT, IL-6, and p-ERK levels. SOD1 and GPX5 were decreased in the epididymis of diabetic rat, whereas Zn supplementation attenuated these changes. The present results demonstrate the beneficial role of Zn supplementation in diabetes-associated testicular alterations of rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Prasad AS (2009) Impact of the discovery of human zinc deficiency on health. J Am Coll Nutr 28(3):257–265

    Article  CAS  PubMed  Google Scholar 

  2. Prasad AS (2014) Impact of the discovery of human zinc deficiency on health. J Trace Elem Med Biol 28(4):357–363. doi:10.1016/j.jtemb.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  3. Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57(9):399–411

    Article  CAS  PubMed  Google Scholar 

  4. Prasad AS, Oberleas D (1971) Changes in activities of zinc-dependent enzymes in zinc-deficient tissues of rats. J Appl Physiol 31(6):842–846

    CAS  PubMed  Google Scholar 

  5. Chen M-D, Liou S-J, Lin P-Y, Yang VC, Alexander PS, Lin W-H (1998) Effects of zinc supplementation on the plasma glucose level and insulin activity in genetically obese (ob/ob) mice. Biol Trace Elem Res 61(3):303–311

    Article  CAS  PubMed  Google Scholar 

  6. Forte G, Bocca B, Peruzzu A, Tolu F, Asara Y, Farace C, et al. (2013) Blood metals concentration in type 1 and type 2 diabetics. Biol Trace Elem Res 156(1–3):79–90

    Article  CAS  PubMed  Google Scholar 

  7. Salgueiro MJ, Krebs N, Zubillaga MB, Weill R, Postaire E, Lysionek AE, et al. (2001) Zinc and diabetes mellitus: is there a need of zinc supplementation in diabetes mellitus patients? Biol Trace Elem Res 81(3):215–228. doi:10.1385/bter:81:3:215

    Article  CAS  PubMed  Google Scholar 

  8. de Sena KCM, de Araújo ADM, Santos MM, de Lima VT, Pedrosa LFC (2005) Effects of zinc supplementation in patients with type 1 diabetes. Biol Trace Elem Res 105(1):1–9

    Article  PubMed  Google Scholar 

  9. Jayawardena R, Ranasinghe P, Galappatthy P, Malkanthi R, Constantine G, Katulanda P (2012) Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr 4(1):13. doi:10.1186/1758-5996-4-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aitken RJ, Roman SD (2008) Antioxidant systems and oxidative stress in the testes. Oxidative Med Cell Longev 1(1):15–24

    Article  Google Scholar 

  11. van Belle TL, Coppieters KT, von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 91(1):79–118. doi:10.1152/physrev.00003.2010

    Article  PubMed  Google Scholar 

  12. Henkel R, Baldauf C, Schill WB (2003) Resorption of the element zinc from spermatozoa by the epididymal epithelium. Reprod Domest Anim 38(2):97–101

    Article  CAS  PubMed  Google Scholar 

  13. Kaminska B, Rozewicka L, Dominiak B, Mielnicka M, Mikulska D (1987) Zinc content in epididymal spermatozoa of metoclopramide-treated rats. Andrologia 19(6):677–683

    Article  CAS  PubMed  Google Scholar 

  14. Srivastava A, Chowdhury AR, Setty BS (1983) Zinc content of maturing spermatozoa in oestrogen treated rats. Int J Androl 6(1):103–108

    Article  CAS  PubMed  Google Scholar 

  15. Jiang X, Bai Y, Zhang Z, Xin Y, Cai L (2014) Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function. Toxicol Appl Pharmacol 279(2):198–210. doi:10.1016/j.taap.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  16. Jiang X, Zhang C, Xin Y, Huang Z, Tan Y, Huang Y, et al. (2013) Protective effect of FGF21 on type 1 diabetes-induced testicular apoptotic cell death probably via both mitochondrial- and endoplasmic reticulum stress-dependent pathways in the mouse model. Toxicol Lett 219(1):65–76. doi:10.1016/j.toxlet.2013.02.022

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Zhang Z, Guo W, Sun W, Miao X, Wu H, et al. (2014) Sulforaphane reduction of testicular apoptotic cell death in diabetic mice is associated with the upregulation of Nrf2 expression and function. Am J Physiol Endocrinol Metab 307(1):E14–E23. doi:10.1152/ajpendo.00702.2013

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Tan Y, Dai J, Li B, Guo L, Cui J, et al. (2011) Exacerbation of diabetes-induced testicular apoptosis by zinc deficiency is most likely associated with oxidative stress, p38 MAPK activation, and p53 activation in mice. Toxicol Lett 200(1–2):100–106. doi:10.1016/j.toxlet.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  19. Zhao Y, Tan Y, Dai J, Wang B, Li B, Guo L, et al. (2012) Zinc deficiency exacerbates diabetic down-regulation of akt expression and function in the testis: essential roles of PTEN, PTP1B and TRB3. J Nutr Biochem 23(8):1018–1026. doi:10.1016/j.jnutbio.2011.05.011

    Article  CAS  PubMed  Google Scholar 

  20. Zhao Y, Zhao H, Zhai X, Dai J, Jiang X, Wang G, et al. (2013) Effects of Zn deficiency, antioxidants, and low-dose radiation on diabetic oxidative damage and cell death in the testis. Toxicol Mech Methods 23(1):42–47. doi:10.3109/15376516.2012.731437

    Article  CAS  PubMed  Google Scholar 

  21. Ohly P, Dohle C, Abel J, Seissler J, Gleichmann H (2000) Zinc sulphate induces metallothionein in pancreatic islets of mice and protects against diabetes induced by multiple low doses of streptozotocin. Diabetologia 43(8):1020–1030. doi:10.1007/s001250050009

    Article  CAS  PubMed  Google Scholar 

  22. Ho E, Quan N, Tsai YH, Lai W, Bray TM (2001) Dietary zinc supplementation inhibits NFkappaB activation and protects against chemically induced diabetes in CD1 mice. Exp Biol Med (Maywood) 226(2):103–111

    CAS  Google Scholar 

  23. Haglund B, Ryckenberg K, Selinus O, Dahlquist G (1996) Evidence of a relationship between childhood-onset type I diabetes and low groundwater concentration of zinc. Diabetes Care 19(8):873–875

    Article  CAS  PubMed  Google Scholar 

  24. Moltchanova E, Rytkonen M, Kousa A, Taskinen O, Tuomilehto J, Karvonen M (2004) Zinc and nitrate in the ground water and the incidence of type 1 diabetes in Finland. Diabet Med 21(3):256–261

    Article  CAS  PubMed  Google Scholar 

  25. Parslow RC, McKinney PA, Law GR, Staines A, Williams R, Bodansky HJ (1997) Incidence of childhood diabetes mellitus in Yorkshire, Northern England, is associated with nitrate in drinking water: an ecological analysis. Diabetologia 40(5):550–556. doi:10.1007/s001250050714

    Article  CAS  PubMed  Google Scholar 

  26. Samuelsson U, Oikarinen S, Hyoty H, Ludvigsson J (2011) Low zinc in drinking water is associated with the risk of type 1 diabetes in children. Pediatr Diabetes 12(3 Pt 1):156–164. doi:10.1111/j.1399-5448.2010.00678.x

    Article  CAS  PubMed  Google Scholar 

  27. Stene LC, Hongve D, Magnus P, Ronningen KS, Joner G (2002) Acidic drinking water and risk of childhood-onset type 1 diabetes. Diabetes Care 25(9):1534–1538

    Article  CAS  PubMed  Google Scholar 

  28. Zhao HX, Mold MD, Stenhouse EA, Bird SC, Wright DE, Demaine AG, et al. (2001) Drinking water composition and childhood-onset type 1 diabetes mellitus in Devon and Cornwall, England. Diabet Med 18(9):709–717

    Article  CAS  PubMed  Google Scholar 

  29. Li B, Tan Y, Sun W, Fu Y, Miao L, Cai L (2013) The role of zinc in the prevention of diabetic cardiomyopathy and nephropathy. Toxicol Mech Methods 23(1):27–33. doi:10.3109/15376516.2012.735277

    Article  CAS  PubMed  Google Scholar 

  30. Miao X, Wang Y, Sun J, Sun W, Tan Y, Cai L, et al. (2013) Zinc protects against diabetes-induced pathogenic changes in the aorta: roles of metallothionein and nuclear factor (erythroid-derived 2)-like 2. Cardiovasc Diabetol 12:54. doi:10.1186/1475-2840-12-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li B, Cui W, Tan Y, Luo P, Chen Q, Zhang C, et al. (2014) Zinc is essential for the transcription function of Nrf2 in human renal tubule cells in vitro and mouse kidney in vivo under the diabetic condition. J Cell Mol Med 18(5):895–906. doi:10.1111/jcmm.12239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim CH, Kim JH, Lee J, Ahn YS (2003) Zinc-induced NF-kappaB inhibition can be modulated by changes in the intracellular metallothionein level. Toxicol Appl Pharmacol 190(2):189–196

    Article  CAS  PubMed  Google Scholar 

  33. Kushwaha S, Jena GB (2012) Enalapril reduces germ cell toxicity in streptozotocin-induced diabetic rat: investigation on possible mechanisms. Naunyn Schmiedeberg’s Arch Pharmacol 385(2):111–124. doi:10.1007/s00210-011-0707-x

    Article  CAS  Google Scholar 

  34. Perrotta I, Santoro M, Guido C, Avena P, Tripepi S, De Amicis F, et al. (2012) Expression of cyclooxygenase-1 (COX-1) and COX-2 in human male gametes from normal patients, and those with varicocele and diabetes: a potential molecular marker for diagnosing male infertility disorders. J Anat 221(3):209–220. doi:10.1111/j.1469-7580.2012.01534.x

  35. Calvin HI (1981) Comparative labelling of rat epididymal spermatozoa by intratesticularly administered 65ZnCl2 and [35S] cysteine. J Reprod Fertil 61(1):65–73

    Article  CAS  PubMed  Google Scholar 

  36. Maremanda KP, Khan S, Jena G (2014) Zinc protects cyclophosphamide-induced testicular damage in rat: involvement of metallothionein, tesmin and Nrf2. Biochem Biophys Res Commun 445(3):591–596. doi:10.1016/j.bbrc.2014.02.055

    Article  CAS  PubMed  Google Scholar 

  37. Chabory E, Damon C, Lenoir A, Henry-Berger J, Vernet P, Cadet R, et al. (2010) Mammalian glutathione peroxidases control acquisition and maintenance of spermatozoa integrity. J Anim Sci 88(4):1321–1331. doi:10.2527/jas.2009-2583

    Article  CAS  PubMed  Google Scholar 

  38. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  39. Kushwaha S, Jena GB (2013) Telmisartan ameliorates germ cell toxicity in the STZ-induced diabetic rat: studies on possible molecular mechanisms. Mutat Res Genet Toxicol Environ Mutagen 755(1):11–23. doi:10.1016/j.mrgentox.2013.04.013

    Article  CAS  Google Scholar 

  40. Spencer H (1979) Direct measurement of zinc in plasma by atomic absorption spectroscopy. Clin Chem 25(8):1487–1491

    Google Scholar 

  41. Danscher G, Hammen R, Fjerdingstad E, Rebbe H (1978) Zinc content of human ejaculate and the motility of sperm cells. Int J Androl 1(1–6):576–581

    Article  CAS  Google Scholar 

  42. Khan S, Ahmad T, Parekh CV, Trivedi PP, Kushwaha S, Jena G (2011) Investigation on sodium valproate induced germ cell damage, oxidative stress and genotoxicity in male Swiss mice. Reprod Toxicol 32(4):385–394

    Article  CAS  PubMed  Google Scholar 

  43. Williams K, Frayne J, Hall L (1998) Expression of extracellular glutathione peroxidase type 5 (GPX5) in the rat male reproductive tract. Mol Hum Reprod 4(9):841–848

    Article  CAS  PubMed  Google Scholar 

  44. Yousef MI, El-Hendy HA, El-Demerdash FM, Elagamy EI (2002) Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals, lipids and protein electrophoretic behavior in growing rats. Toxicology 175(1–3):223–234

    Article  CAS  PubMed  Google Scholar 

  45. Khan S, Jena G, Tikoo K (2015) Sodium valproate ameliorates diabetes-induced fibrosis and renal damage by the inhibition of histone deacetylases in diabetic rat. Exp Mol Pathol 98(2):230–239

    Article  CAS  PubMed  Google Scholar 

  46. Bicer M, Akil M, Sivrikaya A, Kara E, Baltaci AK, Mogulkoc R (2011) Effect of zinc supplementation on the distribution of various elements in the serum of diabetic rats subjected to an acute swimming exercise. J Physiol Biochem 67(4):511–517. doi:10.1007/s13105-011-0096-0

    Article  CAS  PubMed  Google Scholar 

  47. Ramesh B, Pugalendi KV (2005) Antihyperlipidemic and antidiabetic effects of umbelliferone in streptozotocin diabetic rats. Yale J Biol Med 78(4):189–196

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ozsoy-Sacan O, Yanardag R, Orak H, Ozgey Y, Yarat A, Tunali T (2006) Effects of parsley (Petroselinum crispum) extract versus glibornuride on the liver of streptozotocin-induced diabetic rats. J Ethnopharmacol 104(1–2):175–181. doi:10.1016/j.jep.2005.08.069

    Article  PubMed  Google Scholar 

  49. Liang T, Zhang Q, Sun W, Xin Y, Zhang Z, Tan Y, et al. (2015) Zinc treatment prevents type 1 diabetes-induced hepatic oxidative damage, endoplasmic reticulum stress, and cell death, and even prevents possible steatohepatitis in the OVE26 mouse model: important role of metallothionein. Toxicol Lett 233(2):114–124. doi:10.1016/j.toxlet.2015.01.010

    Article  CAS  PubMed  Google Scholar 

  50. Reding P, Duchateau J, Bataille C (1984) Oral zinc supplementation improves hepatic encephalopathy. Results of a randomised controlled trial. Lancet 2(8401):493–495

    Article  CAS  PubMed  Google Scholar 

  51. Marchesini G, Bugianesi E, Ronchi M, Flamia R, Thomaseth K, Pacini G (1998) Zinc supplementation improves glucose disposal in patients with cirrhosis. Metabolism 47(7):792–798

    Article  CAS  PubMed  Google Scholar 

  52. Soudamani S, Malini T, Balasubramanian K (2005) Effects of streptozotocin-diabetes and insulin replacement on the epididymis of prepubertal rats: histological and histomorphometric studies. Endocr Res 31(2):81–98

    Article  CAS  PubMed  Google Scholar 

  53. Chausmer AB (1998) Zinc, insulin and diabetes. J Am Coll Nutr 17(2):109–115

    Article  CAS  PubMed  Google Scholar 

  54. Mahajan SK (1989) Zinc in kidney disease. J Am Coll Nutr 8(4):296–304

    Article  CAS  PubMed  Google Scholar 

  55. Ozcelik D, Naziroglu M, Tuncdemir M, Celik O, Ozturk M, Flores-Arce MF (2012) Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats. Biol Trace Elem Res 150(1–3):342–349. doi:10.1007/s12011-012-9508-4

    Article  PubMed  Google Scholar 

  56. Kolasa A, Marchlewicz M, Adler G, Ciechanowicz A, Glabowski W, Wiszniewska B (2008) Expression of E-SOD, GPX5 mRNAs and immunoexpression of Cu/ZnSOD in epididymal epithelial cells of finasteride-treated rats. Andrologia 40(5):303–311. doi:10.1111/j.1439-0272.2008.00858.x

    Article  CAS  PubMed  Google Scholar 

  57. Celino FT, Yamaguchi S, Miura C, Ohta T, Tozawa Y, Iwai T, et al. (2011) Tolerance of spermatogonia to oxidative stress is due to high levels of Zn and Cu/Zn superoxide dismutase. PLoS one 6(2):e16938. doi:10.1371/journal.pone.0016938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Faure P, Benhamou PY, Perard A, Halimi S, Roussel AM (1995) Lipid peroxidation in insulin-dependent diabetic patients with early retina degenerative lesions: effects of an oral zinc supplementation. Eur J Clin Nutr 49(4):282–288

    CAS  PubMed  Google Scholar 

  59. Byun HR, Choi JA, Koh JY (2014) The role of metallothionein-3 in streptozotocin-induced beta-islet cell death and diabetes in mice. Metallomics 6(9):1748–1757. doi:10.1039/c4mt00143e

    Article  CAS  PubMed  Google Scholar 

  60. Taylor A, Robson A, Houghton BC, Jepson CA, Ford WC, Frayne J (2013) Epididymal specific, selenium-independent GPX5 protects cells from oxidative stress-induced lipid peroxidation and DNA mutation. Hum Reprod 28(9):2332–2342. doi:10.1093/humrep/det237

    Article  CAS  PubMed  Google Scholar 

  61. Om AS, Chung KW (1996) Dietary zinc deficiency alters 5 alpha-reduction and aromatization of testosterone and androgen and estrogen receptors in rat liver. J Nutr 126(4):842–848

    CAS  PubMed  Google Scholar 

  62. Noblanc A, Kocer A, Chabory E, Vernet P, Saez F, Cadet R, et al. (2011) Glutathione peroxidases at work on epididymal spermatozoa: an example of the dual effect of reactive oxygen species on mammalian male fertilizing ability. J Androl 32(6):641–650. doi:10.2164/jandrol.110.012823

    Article  CAS  PubMed  Google Scholar 

  63. Evenson DP, Emerick RJ, Jost LK, Kayongo-Male H, Stewart SR (1993) Zinc-silicon interactions influencing sperm chromatin integrity and testicular cell development in the rat as measured by flow cytometry. J Anim Sci 71(4):955–962

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the financial assistance received from National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, India, for carrying out the above experimentation. The authors would like to acknowledge Mr. Vinod Kumar and Mr. B. Mallikarjun (Central Instrumentation Facility, NIPER) for their timely assistance in the Zn analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Jena.

Ethics declarations

Conflict of Interest

None.

Electronic Supplementary Material

ESM 1

(DOCX 9756 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maremanda, K.P., Khan, S. & Jena, G.B. Role of Zinc Supplementation in Testicular and Epididymal Damages in Diabetic Rat: Involvement of Nrf2, SOD1, and GPX5. Biol Trace Elem Res 173, 452–464 (2016). https://doi.org/10.1007/s12011-016-0674-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0674-7

Keywords

Navigation