Skip to main content
Log in

Abstract

This study investigated the toxicity of aluminum chloride (AlCl3) exposure in the rat kidney. Forty male Wistar rats (5 weeks old), weighing 110–120 g, were randomly divided into four groups: control group (CG, 0 g/L AlCl3), low dose group (LG, 0.4 g/L AlCl3), mid dose group (MG, 0.8 g/L AlCl3), and high dose group (HG, 1.6 g/L AlCl3). Rats were administered AlCl3 in their drinking water for 120 days. A variety of measurements were taken including superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities, malondialdehyde (MDA) concentration in the kidney and blood urea nitrogen (BUN), and cystatin C (Cys-C) concentrations in the serum. In addition, Al and β2-microglobulin (β2-MG) concentrations and the activity of N-acetyl-β-d-glucosaminidase (NAG) in the urine were determined. The results showed that in the AlCl3-treated groups SOD and GSH-PX activities were decreased, while NAG activity and Al, MDA, BUN, Cys-C, and β2-MG concentrations were increased, compared with the CG. This study indicates that AlCl3 exposure induces oxidative stress and suppresses kidney function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Exley C, Burgess E, Day JP, Jeffery EH, Melethil S, Yokel RA (1996) Aluminum toxicokinetics. J Toxicol Env Heal 48:569–584

    Article  CAS  Google Scholar 

  2. Tariq M, Morais C, Sujata B, Sobki S, Sulaiman MA, Khader AA (1999) Aluminum exacerbates cyclosporin induced nephrotoxicity in rats. Ren Fail 21:35–48

    Article  CAS  PubMed  Google Scholar 

  3. Shakoor A, Gupta PK, Singh YP, Kataria M (2000) Beneficial effects of aluminum on the progression of lead-induced nephropathy in rats. Pharmacol Toxicol 87:258–260

    Article  CAS  PubMed  Google Scholar 

  4. Abdel-Hamid GA (2013) Effect of vitamin E and selenium against aluminum-induced nephrotoxicity in pregnant rats. Folia Histochem Cyto 51:312–319

    Article  CAS  Google Scholar 

  5. Belaïd-Nouira Y, Bakhta H, Haouas Z, Flehi-Slim I, Ben Cheikh H (2013) Fenugreek seeds reduce aluminum toxicity associated with renal failure in rats. Nutr Res Pract 7:466–474

    Article  PubMed  PubMed Central  Google Scholar 

  6. Al Kahtani MA, Abdel-Moneim AM, El-Sayed WM (2014) The influence of taurine pretreatment on aluminum chloride induced nephrotoxicity in Swiss albino mice. Histol Histopathol 29:45–55

    PubMed  Google Scholar 

  7. Geyikoglu F, Turkez H, Bakir TO, Cicek M (2013) The genotoxic, hepatotoxic, nephrotoxic, haematotoxic and histopathological effects in rats after aluminium chronic intoxication. Toxicol Ind Health 29:780–791

    Article  CAS  PubMed  Google Scholar 

  8. Campbell A, Becaria A, Lahiri DK, Sharman K, Bondy SC (2004) Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain. J Neurosci Res 75:565–572

    Article  CAS  PubMed  Google Scholar 

  9. Mahieu ST, Gionotti M, Millen N, Elías MM (2003) Effect of chronic accumulation of aluminum on renal function, cortical renal oxidative stress and cortical renal organic anion transport in rats. Arch Toxicol 77:605–612

    Article  CAS  PubMed  Google Scholar 

  10. Bökenkamp A, van Wijk JAE, Lentze MJ, Stoffel-Wagner B (2002) Effect of corticosteroid therapy on serum cystatin C and β2-microglobulin concentrations. Clin Chem 48:1123–1126

    PubMed  Google Scholar 

  11. Filler G, Bökenkamp A, Hofmann W, Le Bricon T, Martínez-Brú C, Grubb A (2005) Cystatin C as a marker of GFR-history, indications, and future research. Clin Biochem 38:1–8

    Article  CAS  PubMed  Google Scholar 

  12. Herget-Rosenthal S, Bökenkamp A, Hofmann W (2007) How to estimate GFR-serum creatinine, serum cystatin C or equations? Clin Biochem 40:153–161

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi E, Suwazono Y, Dochi M, Honda R, Nishijo M, Kido T, Nakagawa H (2008) Estimation of benchmark doses as threshold levels of urinary cadmium, based on excretion of β2-microglobulin in cadmium-polluted and non-polluted regions in Japan. Toxicol Lett 179:108–112

    Article  CAS  PubMed  Google Scholar 

  14. Tian F, Wang ZB, Meng DM, Liu RG, Zhang HY, Li HY, Lv FF (2014) Preliminary study on the role of virtual touch tissue quantification combined with a urinary β2-microglobulin test on the early diagnosis of gouty kidney damage. Ultrasound Med Biol 40:1394–1399

    Article  PubMed  Google Scholar 

  15. Sönmez F, Dönmez O, Önmez HM, Keskınoğlu A, Kabasakal C, Mır S (2002) Lead exposure and urinary N-acetyl β D glucosaminidase activity in adolescent workers in auto repair workshops. J Adolescent Health 30:213–216

    Article  Google Scholar 

  16. Yang CC, Chen HI, Chiu YW, Tsai CH, Chuang HY (2013) Metallothionein 1A polymorphisms may influence urine uric acid and N-acetyl-beta-D-glucosaminidase (NAG) excretion in chronic lead-exposed workers. Toxicology 306:68–73

    Article  CAS  PubMed  Google Scholar 

  17. Zhu YZ, Han YF, Zhao HS, Li J, Hu CW, Li YF, Zhang ZG (2013) Suppressive effect of accumulated aluminum trichloride on the hepatic microsomal cytochrome P450 enzyme system in rats. Food Chem Toxicol 51:210–214

    Article  CAS  PubMed  Google Scholar 

  18. Xia SL, Li M, Shao B, Bai CS, Zhang JH, Li YF (2013) Effects of sub-chronic aluminum exposure on renal pathologic structure in rats. Journal of Northeast Agricultural University (English Edition) 20:49–52

    Article  CAS  Google Scholar 

  19. Mohammed A, Kahtani A (2010) Renal damage mediated by oxidative stress in mice treated with aluminium chloride: protective effects of taurine. J Biol Sci 10:584–595

    Article  Google Scholar 

  20. Brezis M, Rosen S (1995) Hypoxia of the renal medulla—its implications for disease. New Engl J Med 332:647–655

    Article  CAS  PubMed  Google Scholar 

  21. Haugen E, Nath KA (1999) The involvement of oxidative stress in the progression of renal injury. Blood Purif 17:58–65

    Article  CAS  PubMed  Google Scholar 

  22. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell B 39:44–84

    Article  CAS  Google Scholar 

  23. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    Article  CAS  PubMed  Google Scholar 

  24. Chambers JW, LoGrasso PV (2011) Mitochondrial c-Jun N-terminal kinase (JNK) signaling initiates physiological changes resulting in amplification of reactive oxygen species generation. J Biol Chem 286:16052–16062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu ML, Xue JD, Li YJ, Zhang WQ, Ma DX, Liu L, Zhang ZG (2013) Resveratrol protects against arsenic trioxide-induced nephrotoxicity by facilitating arsenic metabolism and decreasing oxidative stress. Arch Toxicol 87:1025–1035

    Article  CAS  PubMed  Google Scholar 

  26. Hagar H, Al Malki W (2014) Betaine supplementation protects against renal injury induced by cadmium intoxication in rats: role of oxidative stress and caspase-3. Environ Toxicol Phar 37:803–811

    Article  CAS  Google Scholar 

  27. Risch L, Herklotz R, Blumberg A, Huber AR (2001) Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients. Clin Chem 47:2055–2059

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Science Foundation Project (31172375, 31372496, 31302147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Li.

Ethics declarations

Ethical Approval of the Study Protocol

The experiments were performed according to the Guiding Principles in the Use of Animals in Toxicology, as advocated by the Chinese Society of Toxicology. The study protocol was approved by the Ethics Committee on the Use and Care of Animals, Northeast Agricultural University, China.

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, Q., Sun, X. et al. The Toxicity of Aluminum Chloride on Kidney of Rats. Biol Trace Elem Res 173, 339–344 (2016). https://doi.org/10.1007/s12011-016-0648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0648-9

Keywords

Navigation