Skip to main content
Log in

Selenium Deficiency Attenuates Chicken Duodenal Mucosal Immunity via Activation of the NF-κb Signaling Pathway

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) deficiency can cause intestinal mucosal inflammation, which is related to activation of nuclear transcription factor kappa-B (NF-κB) signaling pathway. However, the mechanism of inflammatory response in chicken duodenal mucosa caused by Se deficiency and its relationship with the NF-κB signaling pathway remain elusive. In this study, we firstly obtained Se-deficient chickens bred with 0.01 mg/kg Se and the normal chickens bred with 0.4 mg/kg Se for 35 days. Then, NF-κB signaling pathway, secretory immunoglobulin A (SIgA), inflammatory cytokines, oxidized glutathione, glutathione peroxidase, and glutathione activities were determined. The results showed that Se deficiency obviously enhanced p50, p65, and p65 DNA-binding activities. The phosphorylation of IκB-α and phosphorylation of kappa-B kinase subunit alpha (IKKα) and IKKα were elevated, but IκB-α was decreased (P < 0.05). Moreover, Se deficiency reduced SIgA amount in the duodenal mucosa but increased the level of interleukin-1β (IL-1β), IL-17A, tumor necrosis factor-α (TNF-α), and interferon gamma (IFN-γ). In contrast, anti-inflammatory cytokines, such as TGF-β1 and IL-10, were significantly suppressed. Additionally, Se deficiency increased oxidized glutathione activity, whereas decreased glutathione peroxidase and glutathione activities (P < 0.05), suggesting that Se deficiency affected the regulation function of redox. Taken together, our results demonstrated that Se deficiency attenuated chicken duodenal mucosal immunity via activation of NF-κB signaling pathway regulated by redox activity, which suggested that Se is a crucial host factor involved in regulating inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adamis PD, Gomes DS, Pinto ML, Panek AD, Eleutheiro EC (2004) The role of glutathione transferases in cadmium stress. Toxicol Lett 154:81–88

    Article  CAS  PubMed  Google Scholar 

  2. Aw TY (2005) Intestinal glutathione: determinant of mucosal peroxide transport, metabolism, and oxidative susceptibility. Toxicol Appl Pharmacol 204(3):320–328

    Article  CAS  PubMed  Google Scholar 

  3. Bellinger FP, Raman AV, Reeves MA, Berry MJ (2009) Regulation and function of selenoproteins in human disease. Biochem J 422:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benjamin B, Perkins ND (2014) Retraction: “A cell cycle regulatory network controlling NF-κB subunit activity and function”. EMBO J 33(17):1978

    Article  Google Scholar 

  5. Brandtzaeg P (2007) Induction of secretory immunity and memory at mucosal surfaces. Vaccine 30:5467–5484

    Article  Google Scholar 

  6. Gloire G, Piette J (2009) Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxid Redox Signal 11:2209–2222

    Article  CAS  PubMed  Google Scholar 

  7. Vunta H, Belda BJ, Arner RJ, Reddy CC, Vanden Heuvel JP, Prabhu KS (2008) Selenium attenuates pro-inflammatory gene expression in macrophages. Mol Nutr Food Res 52:1316–1323

    Article  CAS  PubMed  Google Scholar 

  8. Jamaluddin M, Wang S, Boldogh I, Tian B, Brasier AR (2007) TNF-alpha-induced NF-kappaB/RelA Ser(276) phosphorylation and enhanceosome formation is mediated by an ROS-dependent PKAc pathway. Cell Signal 19:1419–1433

    Article  CAS  PubMed  Google Scholar 

  9. Kieliszek M, Błażejak S (2013) Selenium: significance, and outlook for supplementation. Nutrition 29:713–718

    Article  CAS  PubMed  Google Scholar 

  10. Kim Y, Kim DC, Cho ES, Ko SO, Kwon WY, Suh GJ, Shin HK (2014) Antioxidant and anti-inflammatory effects of selenium in oral buccal mucosa and small intestinal mucosa during intestinal ischemia-reperfusion injury. J Inflamm 11:36

    Article  Google Scholar 

  11. Kretz-Remy C, Arrigo AP (2001) Selenium: a key element that controls NF-kappa B activation and I kappa B alpha half life. Biofactors 14:117–125

    Article  CAS  PubMed  Google Scholar 

  12. Lau ST, Lin ZX, Leung PS (2010) Role of reactive oxygen species in brucein D-mediated p38-mitogen-activated protein kinase and nuclear factor-kappaB signalling pathways in human pancreatic adenocarcinoma cells. Br J Cancer 102(3):583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu CP, Fu J, Lin SL, Wang XS, Li S (2014) Effects of dietary selenium deficiency on mRNA levels of twenty-one selenoprotein genes in the liver of layer chicken. Biol Trace Elem Res 159:192–198

    Article  CAS  PubMed  Google Scholar 

  14. Maehira F, Miyagi I, Eguchi Y (2003) Selenium regulates transcription factor NF-kappaB activation during the acute phase reaction. Clin Chim Acta 334:163–171

    Article  CAS  PubMed  Google Scholar 

  15. Martins JO, Zanoni FL, Martins DO, Coimbra R, Krieger JE, Jancar S, Sannomiya P (2009) Insulin regulates cytokines and intercellular adhesion molecule-1 gene expression through nuclear factor-kappaB activation in LPS-induced acute lung injury in rats. Shock 31:404–409

    Article  CAS  PubMed  Google Scholar 

  16. Min-Chang G, Wei-Hong T, Zhen X, Jie S (2014) Effects of selenium-enriched protein from ganoderma lucidum on the levels of IL-1β and TNF-α, oxidative stress, and NF-κB activation in ovalbumin-induced asthmatic mice. Evid Based Complement Alternat Med 10:182817

    Google Scholar 

  17. Narayan V, Ravindra KC, Liao C, Kaushal N, Carlson BA, Prabhu KS (2015) Epigenetic regulation of inflammatory gene expression in macrophages by selenium. J Nutr Biochem 26(2):138–145

    Article  CAS  PubMed  Google Scholar 

  18. Nath KA, Grande J, Croatt A et al (1998) Redox regulation of renal DNA synthesis, transforming growth factor-b1 and collagen gene expression. Kidney Int 53:367–381

    Article  CAS  PubMed  Google Scholar 

  19. Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31:e73

    Article  PubMed  PubMed Central  Google Scholar 

  20. Poston L, Igosheva N, Mistry HD, Seed PT, Shennan AH, Rana S, Karumanchi SA, Chappell LC (2011) Role of oxidative stress and antioxidant supplementation in pregnancy disorders. Am J Clin Nutr 94(6):1980S–1985S

    Article  CAS  PubMed  Google Scholar 

  21. Reddi AS, Bollineni JS (2001) Selenium-deficient diet induces renal oxidative stress and injury via TGF-β1 in normal and diabetic rats. Kidney Int 59:1342–1353

    Article  CAS  PubMed  Google Scholar 

  22. Sakr Y, Reinhart K, Bloos F, Marx G, Russwurm S, Bauer M, Brunkhorst F (2007) Time course and relationship between plasma selenium concentrations, systemic inflammatory response, sepsis, and multiorgan failure. Br J Anaesth 98(6):775–784

    Article  CAS  PubMed  Google Scholar 

  23. Salonen JT, Salonen R, Penttila I, Herranen J, Jauhiainen M, Kantola M, Lappetelainen R, Maenpaa PH, Alfthan G, Puska P (1985) Serum fatty acids, apolipoproteins, selenium and vitamin antioxidants and the risk of death from coronary artery disease. Am J Cardiol 56:226–231

    Article  CAS  PubMed  Google Scholar 

  24. Sheng PF, Jiang Y, Zhang ZW, Zhang JL, Li S, Zhang ZQ, Xu SW (2014) The effect of Se-deficient diet on gene expression of inflammatory cytokines in chicken brain. Biometals 27(1):33–43

    Article  CAS  PubMed  Google Scholar 

  25. Shrikant P, Chung IY, Ballestas ME, Benveniste EN (1994) Regulation of intercellular adhesion molecule-1 gene expression by tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma in astrocytes. J Neuroimmunol 51(2):209–220

    Article  CAS  PubMed  Google Scholar 

  26. Shrimali RK, Irons RD, Carlson BA, Sano Y, Gladyshev VN, Park JM, Hatfield DL (2008) Selenoproteins mediate T cell immunity through an antioxidant mechanism. J Biol Chem 283:20181–20185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stow JL, Low PC, Offenhäuser C, Sangermani D (2009) Cytokine secretion in macrophages and other cells: pathways and mediators. Immunobiology 214:601–612

    Article  CAS  PubMed  Google Scholar 

  28. Tian B, Brasier AR (2003) Identification of a nuclear factor κB-dependent gene network. Recent Prog Horm Res 58:95–130

    Article  CAS  PubMed  Google Scholar 

  29. Ugusman A, Zakaria Z, Kien Hui C, Megat Mohd Nordin NA (2011) Piper sarmentosum inhibits ICAM-1 and Nox4 gene expression in oxidative stress-induced human umbilical vein endothelial cells. BMC Complement Altern Med 11:31

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang L, Zheng X, Xiang HL, Fu XH, Cao JG (2009) 7-Difluoromethyl-5, 4′-dimethoxygenistein inhibits oxidative stress induced adhesion between endothelial cells and monocytes via NF-kappaB. Eur J Pharmacol 605:31–35

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto S, Tanabe M, Wakabayashi G, Shimazu M, Matsumoto K, Kitajima M (2001) The role of tumor necrosis factor-alpha and interleukin-1 beta in ischemia-reperfusion injury of the rat small intestine. J Surg Res 9:134–141

    Article  Google Scholar 

  32. Yang SF, Zhuang TF, Si YM, Qi KY, Zhao J (2015) Coriolus versicolor mushroom polysaccharides exert immunoregulatory effects on mouse B cells via membrane Ig and TLR-4 to activate the MAPK and NF-κB signaling pathways. Mol Immunol 64(1):144–151

    Article  CAS  PubMed  Google Scholar 

  33. Yao H, Yang SR, Kode A, Rajendrasozhan S, Caito S, Adenuga D, Henry R, Edirisinghe I, Rahman I (2007) Redox regulation of lung inflammation: role of NADPH oxidase and NF-kappaB signalling. Biochem Soc Trans 35:1151–1155

    Article  CAS  PubMed  Google Scholar 

  34. Yao H, Zhao W, Zhao X, Fan R, Khoso PA, Zhang Z, Liu W, Xu S (2014) Selenium deficiency mainly influences the gene expressions of antioxidative selenoproteins in chicken muscles. Biol Trace Elem Res 161:318–327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Postgraduate Research and Innovation Projects in Heilongjiang Province of China (YJSCX2014-203) and the Foundation of National Natural Science Project, P.R. China (No. 31272624 / C180802). We are grateful to Dr. Hua Zhang (College of Life Science and Technology, HeiLongJiang BaYi Agricultural University) for a critical reading of the manuscript. The authors wish to thank the study the participants and Shanghai Proteome Research Analysis Center of the Chinese Academy of Sciences for their contributions to this study. All of the authors have read the manuscript and have agreed to submit it, in its current form, for consideration for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Qu, Y., Wang, J. et al. Selenium Deficiency Attenuates Chicken Duodenal Mucosal Immunity via Activation of the NF-κb Signaling Pathway. Biol Trace Elem Res 172, 465–473 (2016). https://doi.org/10.1007/s12011-015-0589-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0589-8

Keywords

Navigation