Skip to main content

Advertisement

Log in

Validation of a Metallomics Analysis of Placenta Tissue by Inductively-Coupled Plasma Mass Spectrometry

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Trace elements can play an important role in maternal health and fetal development, and deficiencies in some essential minerals including zinc and copper have been correlated in some individuals to the development of birth defects and adverse health outcomes later in life. The exact etiology of conditions like preeclampsia and the effects of fetal exposure to toxic metals has not been determined, making the assessment of trace element levels crucial to the elucidation of the causes of conditions like preeclampsia. Previous studies analyzing serum and placenta tissue have produced conflicting findings, suggesting the need for a robust, validated sample preparation and analysis method for the determination of trace elements in placenta. In this report, an acid digestion method and analysis by ICP-MS for a broad metallomics/mineralomics panel of trace elements is developed and validated over three experimental days for inter- and intraday precision and accuracy, linear range, matrix impact, and dilution verification. Spike recovery experiments were performed for the essential elements chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), and zinc (Zn), and the toxic elements arsenic (As), cadmium (Cd), and lead (Pb) at levels equal to and in excess of native concentrations in control placenta tissue. The validated method will be essential for the development of scientific studies of maternal health and toxic metal exposure effects in childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ICP-MS:

Inductively coupled plasma-mass spectrometry

NIST:

National Institute of Standards and Technology

ELOQ:

Estimated limit of quantitation

LOD:

Limit of detection

KED:

Kinetic energy discrimination

SF-ICP-MS:

Sector field inductively coupled plasma mass spectrometry

IUGR:

Intra-uterine growth restriction

References

  1. Frausto da Silva JJR, Williams RJP (2001) The biological chemistry of the elements, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  2. Zhuang T, Han H, Yang Z (2014) Iron, oxidative stress and gestational diabetes. Nutrients 6(9):3968–3980. doi:10.3390/nu6093968

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Burton GJ, Sebire NJ, Myatt L, Tannetta D, Wang YL, Sadovsky Y, Staff AC, Redman CW (2014) Optimising sample collection for placental research. Placenta 35(1):9–22. doi:10.1016/j.placenta.2013.11.005

    Article  PubMed  CAS  Google Scholar 

  4. Sakamoto M, Yasutake A, Domingo JL, Chan HM, Kubota M, Murata K (2013) Relationships between trace element concentrations in chorionic tissue of placenta and umbilical cord tissue: potential use as indicators for prenatal exposure. Environ Int 60:106–111. doi:10.1016/j.envint.2013.08.007

    Article  PubMed  CAS  Google Scholar 

  5. Fagerstedt S, Kippler M, Scheynius A, Gutzeit C, Mie A, Alm J, Vahter M (2015) Anthroposophic lifestyle influences the concentration of metals in placenta and cord blood. Environ Res 136:88–96. doi:10.1016/j.envres.2014.08.044

    Article  PubMed  CAS  Google Scholar 

  6. Levine KE, Tudan C, Grohse PM, Weber FX, Levine MA, Kim YSJ (2011) Aspects of bioanalytical method validation for the quantitative determination of trace elements. Bioanalysis 3(15):1699–1712. doi:10.4155/bio.11.163

    Article  PubMed  CAS  Google Scholar 

  7. USFDA (2001) Guidance for industry bioanalytical method validation, Rockville, MD

  8. Hu LG, He B, Wang YC, Jiang GB, Sun HZ (2013) Metallomics in environmental and health related research: current status and perspectives. Chin Sci Bull 58(2):169–176. doi:10.1007/s11434-012-5496-1

    Article  CAS  Google Scholar 

  9. Mounicou S, Szpunar J, Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev 38(4):1119–1138. doi:10.1039/b713633c

    Article  PubMed  CAS  Google Scholar 

  10. Sussulini A, Becker JS (2011) Combination of PAGE and LA-ICP-MS as an analytical workflow in metallomics: state of the art, new quantification strategies, advantages and limitations. Metallomics 3(12):1271–1279. doi:10.1039/c1mt00116g

    Article  PubMed  CAS  Google Scholar 

  11. Wang B, Feng WY, Zhao YL, Chai ZF (2013) Metallomics insights for in vivo studies of metal based nanomaterials. Metallomics 5(7):793–803. doi:10.1039/c3mt00093a

    Article  PubMed  CAS  Google Scholar 

  12. Harrington JM, Young DJ, Essader AS, Sumner SJ, Levine KE (2014) Analysis of human serum and whole blood for mineral content by ICP-MS and ICP-OES: development of a mineralomics method. Biol Trace Elem Res 160(1):132–142. doi:10.1007/s12011-014-0033-5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Yasuda H, Yonashiro T, Yoshida K, Ishii T, Tsutsui T (2006) Relationship between body mass index and minerals in male Japanese adults. Biomed Res Trace Elem 17:316–321

    CAS  Google Scholar 

  14. Poitras EP, Levine MA, Harrington JM, Essader AS, Fennell TR, Snyder RW, Black SL, Sumner SS, Levine KE (2014) Development of an analytical method for assessment of silver nanoparticle content in biological matrices by inductively coupled plasma mass spectrometry. Biol Trace Elem Res 163(1–2):184–192. doi:10.1007/s12011-014-0141-2

    PubMed  Google Scholar 

  15. Jin L, Zhang L, Li Z, Liu JM, Ye R, Ren A (2013) Placental concentrations of mercury, lead, cadmium, and arsenic and the risk of neural tube defects in a Chinese population. Reprod Toxicol 35(1):25–31. doi:10.1016/j.reprotox.2012.10.015

    Article  PubMed  CAS  Google Scholar 

  16. Burguera JL, Burguera M (2009) Recent on-line processing procedures for biological samples for determination of trace elements by atomic spectrometric methods. Spectrochim Acta B At Spectrosc 64(6):451–458. doi:10.1016/j.sab.2009.01.004

    Article  Google Scholar 

  17. Santos WPC, Hatje V, Lima LN, Trignano SV, Barros F, Castro JT, Korn MGA (2008) Evaluation of sample preparation (grinding and sieving) of bivalves, coffee and cowpea beans for multi-element analysis. Microchem J 89(2):123–130. doi:10.1016/j.microc.2008.01.003

    Article  CAS  Google Scholar 

  18. Mahomed K, James DK, Golding J, McCabe R (1989) Zinc supplementation during pregnancy: a double blind randomised controlled trial. Br Med J 299(6703):826–830

    Article  CAS  Google Scholar 

  19. Chiba K, Narukawa T (2014) The effect of plasma reactions on arsenic measurement by ICP spectrometry. Anal Sci 30(1):175–181. doi:10.2116/analsci.30.175

    Article  PubMed  CAS  Google Scholar 

  20. Case CP, Ellis L, Turner JC, Fairman B (2001) Development of a routine method for the determination of trace metals in whole blood by magnetic sector inductively coupled plasma mass spectrometry with particular relevance to patients with total hip and knee arthroplasty. Clin Chem 47(2):275–280

    PubMed  CAS  Google Scholar 

  21. De Boer JLM (2000) Real-time adjustment of ICP-MS elemental equations. J Anal At Spectrom 15(9):1157–1160. doi:10.1039/b001101k

    Article  Google Scholar 

  22. George EM (2015) New approaches for managing preeclampsia: clues from clinical and basic research. Clin Ther 36(12):1873–1881. doi:10.1016/j.clinthera.2014.09.023

    Article  Google Scholar 

  23. 2013) Hypertension in pregnancy: executive summary. Obstet Gynecol 122(5):1122–1131. doi:10.1097/01.aog.0000437382.03963.88

  24. Redman CWG, Sargent IL (2009) Placental stress and pre-eclampsia: a revised view. Placenta 30(SUPPL):38–42. doi:10.1016/j.placenta.2008.11.021

    Article  Google Scholar 

  25. Bilano VL, Ota E, Ganchimeg T, Mori R, Souza JP (2014) Risk factors of pre-eclampsia/eclampsia and its adverse outcomes in low- and middle-income countries: a WHO secondary analysis. PLoS One 9(3). doi:10.1371/journal.pone.0091198

  26. Khan KS, Wojdyla D, Say L, Gülmezoglu AM, Van Look PF (2006) WHO analysis of causes of maternal death: a systematic review. Lancet 367(9516):1066–1074. doi:10.1016/s0140-6736(06)68397-9

    Article  PubMed  Google Scholar 

  27. Bygbjerg IC (2012) Double burden of noncommunicable and infectious diseases in developing countries. Science 337(6101):1499–1501. doi:10.1126/science.1223466

    Article  PubMed  CAS  Google Scholar 

  28. Jain S, Sharma P, Kulshreshtha S, Mohan G, Singh S (2010) The role of calcium, magnesium, and zinc in pre-eclampsia. Biol Trace Elem Res 133(2):162–170. doi:10.1007/s12011-009-8423-9

    Article  PubMed  CAS  Google Scholar 

  29. Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) Zinc homeostasis and signaling in health and diseases. J Biol Inorg Chem 16(7):1123–1134. doi:10.1007/s00775-011-0797-4

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Bassiouni BA, Foda AI, Rafei AA (1979) Maternal and fetal plasma zinc in pre-eclampsia. Eur J Obstet Gynecol Reprod Biol 9(2):75–80. doi:10.1016/0028-2243(79)90002-9

    Article  PubMed  CAS  Google Scholar 

  31. Halsted JA, Hackley BM, Smith Jr JC (1968) Plasma-zinc and copper in pregnancy and after oral contraceptives. Lancet 2(7562):278–279

    Article  PubMed  CAS  Google Scholar 

  32. Black RE (2001) Micronutrients in pregnancy. Br J Nutr 85(SUPPL. 2):S193–S197

    Article  PubMed  CAS  Google Scholar 

  33. Simmer K, Iles CA, James C, Thompson RPH (1987) Are iron-folate supplements harmful? Am J Clin Nutr 45(1):122–125

    PubMed  CAS  Google Scholar 

  34. Sarwar MS, Ahmed S, Ullah MS, Kabir H, Rahman GKMM, Hasnat A, Islam MS (2013) Comparative study of serum zinc, copper, manganese, and iron in preeclamptic pregnant women. Biol Trace Elem Res 154(1):14–20. doi:10.1007/s12011-013-9721-9

    Article  PubMed  CAS  Google Scholar 

  35. Chaffee BW, King JC (2012) Effect of zinc supplementation on pregnancy and infant outcomes: a systematic review. Paediatr Perinat Epidemiol 26(SUPPL. 1):118–137. doi:10.1111/j.1365-3016.2012.01289.x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dean SV, Lassi ZS, Imam AM, Bhutta ZA (2014) Preconception care: nutritional risks and interventions. Reprod Health 11. doi:10.1186/1742-4755-11-S3-S3

  37. Hovdenak N, Haram K (2012) Influence of mineral and vitamin supplements on pregnancy outcome. Eur J Obstet Gynecol Reprod Biol 164(2):127–132. doi:10.1016/j.ejogrb.2012.06.020

    Article  PubMed  CAS  Google Scholar 

  38. Arild V, Vasiljevna TL, Petrovitsj CV, Öyvind OJ, Evert N (2008) Maternal nickel exposure and congenital musculoskeletal defects. Am J Ind Med 51(11):825–833. doi:10.1002/ajim.20609

    Article  PubMed  Google Scholar 

  39. Wallenstein MB, Shaw GM, Yang W, Carmichael SL (2013) Periconceptional nutrient intakes and risks of orofacial clefts in California. Pediatr Res 74(4):457–465. doi:10.1038/pr.2013.115

    Article  PubMed  CAS  Google Scholar 

  40. Tulchinsky TH (2010) Micronutrient deficiency conditions: global health issues. Public Health Rev 32(1):243–255

    Google Scholar 

  41. Walker SP, Wachs TD, Meeks Gardner J, Lozoff B, Wasserman GA, Pollitt E, Carter JA (2007) Child development: risk factors for adverse outcomes in developing countries. Lancet 369(9556):145–157. doi:10.1016/s0140-6736(07)60076-2

    Article  PubMed  Google Scholar 

  42. Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC, Canfield RL, Dietrich KN, Bornschein R, Greene T, Rothenberg SJ, Needleman HL, Schnaas L, Wasserman G, Graziano J, Roberts R (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 113(7):894–899. doi:10.1289/ehp.7688

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A, Slavkovich V, Lolacono NJ, Cheng Z, Hussain I, Momotaj H, Graziano JH (2004) Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 112(13):1329–1333. doi:10.1289/ehp.6964

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was supported by the NIH Eastern Regional Metabolomics Resource Core (NIH Common Fund Grant 1U24DK097193; PI Susan Sumner), and the NIH Clinical and Translational Sciences Award (NCATS Grant UL1TR00111; PI Marshall Runge). The authors would also like to acknowledge R.K.M. Jayanty, Distinguished RTI Fellow, for his support and mentorship during the development of this manuscript.

Conflict of Interest

The authors declare that they have no competing interest.

Ethical Statement

This manuscript does not contain samples that were obtained from clinical studies, and no personally identifiable patient data is included. Sample collection procedures followed the Helsinki Declaration guidelines regarding informed consent of human volunteers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith E. Levine.

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrington, J.M., Young, D.J., Fry, R.C. et al. Validation of a Metallomics Analysis of Placenta Tissue by Inductively-Coupled Plasma Mass Spectrometry. Biol Trace Elem Res 169, 164–173 (2016). https://doi.org/10.1007/s12011-015-0431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0431-3

Keywords

Navigation