Skip to main content
Log in

Multispectroscopic Investigation of the Interaction Between two Ruthenium(II) Arene Complexes of Curcumin Analogs and Human Serum Albumin

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The interaction between two ruthenium(II) arene complexes of curcumin analogs and human serum albumin (HSA) was systematically investigated by multispectroscopic techniques. The fluorescence spectral results indicated that two complexes quenched the intrinsic fluorescence of HSA through static quenching mode. The quenching constants and the corresponding thermodynamic parameters at different temperatures were calculated. The binding interactions of two complexes with HSA resulted in the complex formation of complex–HSA, and the van der Waals interactions and hydrogen bond interactions played major roles in the complex stabilization. The distances between HSA and two complexes were obtained according to fluorescence resonance energy transfer theory. The site competitive replacement experiments illustrated that two complexes mainly bounded with HSA on site I. The results of synchronous fluorescence spectra, three-dimensional fluorescence spectra, FT–IR spectra, and circular dichroism spectra indicated that the secondary structure of HSA was changed at the present of two complexes. The results of mass spectrometry further validated the binding interaction and the binding number between two complexes and HSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Adams M, Li YQ, Khot H, Kock CD, Smith PJ, Land K, Chibale K, Smith GS (2013) The synthesis and antiparasitic activity of aryl- and ferrocenyl-derived thiosemicarbazone ruthenium(II)–arene complexes. Dalton Trans 42:4677–4685

    Article  PubMed  CAS  Google Scholar 

  2. Demoro B, de Almeida RFM, Marques F, Matos CP, Otero L, Pessoa JC, Santos I, Rodríguez A, Moreno V, Lorenzo J, Gambino D, Tomaz AI (2013) Screening organometallic binuclear thiosemicarbazone ruthenium complexes as potential anti-tumour agents: cytotoxic activity and human serum albumin binding mechanism. Dalton Trans 42:7131–7146

    Article  PubMed  CAS  Google Scholar 

  3. Demoro B, Sarniguet C, Sanchez-Delgado R, Rossi M, Liebowitz D, Caruso F, Olea-Azar C, Moreno V, Medeiros A, Comini MA, Otero L, Gambino D (2012) New organoruthenium complexes with bioactive thiosemicarbazones as co-ligands: potential anti-trypanosomal agents. Dalton Trans 41:1534–1543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Beckford FA, Leblanc G, Thessing Jr J, Shaloski M, Frost BJ, Li L, Seeram NP (2009) Organometallic ruthenium complexes with thiosemicarbazone ligands: synthesis, structure and cytotoxicity of [(η 6-p-cymene)Ru(NS)Cl]+ (NS = 9-anthraldehyde thiosemicarbazones. Inorg Chem Commun 12:1094–1098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Beckford FA, Dourth Jr D, Shaloski M, Didion J, Thessing J, Woods J, Crowell V, Gerasimchuk N, Gonzalez-Sarrías A, Seeram NP (2011) Half-sandwich ruthenium–arene complexes with thiosemicarbazones: synthesis and biological evaluation of [(η 6-p-cymene)Ru(piperonal thiosemicarbazones)Cl]Cl complexes. J Inorg Biochem 105:1019–1029

  6. Stringer T, Therrien B, Hendricks DT, Guzgay H, Smith GS (2011) Mono- and dinuclear (η 6-arene) ruthenium(II) benzaldehyde thiosemicarbazone complexes: synthesis, characterization and cytotoxicity. Inorg Chem Commun 14:956–960

    Article  CAS  Google Scholar 

  7. Su W, Zhou Q, Huang YM, Huang QY, Luo LN, Xiao Q, Huang S, Huang CS, Chen R, Qian QQ, Liu LF, Li PY (2013) Synthesis, crystal and electronic structure, anticancer activity of ruthenium(II) arene complexes with thiosemicarbazones. Appl Organometal Chem 27:307–312

    Article  CAS  Google Scholar 

  8. Su W, Qian QQ, Li PY, Lei XL, Xiao Q, Huang S, Huang CS, Cui JG (2013) Synthesis, characterization, and anticancer activity of a series of ketone‑N4‑substituted thiosemicarbazones and their ruthenium(II) arene complexes. Inorg Chem 52:12440–12449

    Article  PubMed  CAS  Google Scholar 

  9. Habtemariam A, Melchart M, Fernández R, Parsons S, Oswald IDH, Parkin A, Fabbiani FPA, Davidson JE, Dawson A, Aird RE, Jodrell DI, Sadler PJ (2006) Structure–activity relationships for cytotoxic ruthenium(II) arene complexes containing N,N-, N,O-, and O,O-chelating ligands. J Med Chem 49:6858−6868

  10. Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB (2008) Biological activities of curcumin and its analogues (congeners) made by man and mother nature. Biochem Pharmacol 76:1590–1611

    Article  PubMed  CAS  Google Scholar 

  11. Khan MA, El-Khatib R, Rainsford KD, Whitehouse MW (2012) Synthesis and anti-inflammatory properties of some aromatic and heterocyclic aromatic curcuminoids. Bioorg Chem 40:30–38

    Article  PubMed  CAS  Google Scholar 

  12. Fang XB, Fang L, Gou SH, Cheng L (2013) Design and synthesis of dimethylaminomethyl-substituted curcumin derivatives/analogues: potent antitumor and antioxidant activity, improved stability and aqueous solubility compared with curcumin. Bioorg Med Chem Lett 23:1297–1301

    Article  PubMed  CAS  Google Scholar 

  13. Mosley CA, Liotta DC, Snyder JP (2007) Highly active anticancer curcumin analogues. Adv Exp Med Biol 595:77–103

    Article  PubMed  Google Scholar 

  14. Ohori H, Yamakoshi H, Tomizawa M, Shibuya M, Kakudo Y, Takahashi A, Takahashi S, Kato S, Suzuki T, Ishioka C, Iwabuchi Y, Shibata H (2006) Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. Mol Cancer Ther 5:2563–2571

    Article  PubMed  Google Scholar 

  15. Valentini A, Conforti F, Crispini A, De Martino A, Condello R, Stellitano C, Rotilio G, Ghedini M, Federici G, Bernardini S, Pucci D (2009) Synthesis, oxidant properties, and antitumoral effects of a heteroleptic palladium(II) complex of curcumin on human prostate cancer cells. J Med Chem 52:484–491

    Article  PubMed  CAS  Google Scholar 

  16. Aliaga-Alcalde N, Marqués-Gallego P, Kraaijkamp M, Herranz-Lancho C, den Dulk H, Görner H, Roubeau O, Teat SJ, Weyhermüller T, Reedijk J (2010) Copper curcuminoids containing anthracene groups: fluorescent molecules with cytotoxic activity. Inorg Chem 49:9655–9663

    Article  PubMed  CAS  Google Scholar 

  17. Caruso F, Rossi M, Benson A, Opazo C, Freedman D, Monti E, Gariboldi MB, Shaulky J, Marchetti F, Pettinari R, Pettinari C (2012) Ruthenium-arene complexes of curcumin: X-ray and density functional theory structure, synthesis, and spectroscopic characterization, in vitro antitumor activity, and DNA docking studies of (p-cymene)Ru(curcuminato)chloro. J Med Chem 55:1072–1081

    Article  PubMed  CAS  Google Scholar 

  18. Bonfili L, Pettinari R, Cuccioloni M, Cecarini V, Mozzicafreddo M, Angeletti M, Lupidi G, Marchetti F, Pettinari C, Eleuteri AM (2012) Arene–RuII complexes of curcumin exert antitumor activity via proteasome inhibition and apoptosis induction. ChemMedChem 7:2010–2020

    Article  PubMed  CAS  Google Scholar 

  19. Antonyan A, De A, Vitali LA, Pettinari R, Marchetti F, Gigliobianco MR, Pettinari C, Camaioni E, Lupidi G (2014) Evaluation of (arene)Ru(II) complexes of curcumin as inhibitors of dipeptidyl peptidase IV. Biochimie 99:146–152

    Article  PubMed  CAS  Google Scholar 

  20. Pettinari R, Marchetti F, Condello F, Pettinari C, Lupidi G, Scopelliti R, Mukhopadhyay S, Riedel T, Dyson PJ (2014) Ruthenium(II)-arene RAPTA type complexes containing curcumin and bisdemethoxycurcumin display potent and selective anticancer activity. Organometallics 33:3709–3715

    Article  CAS  Google Scholar 

  21. Wang X, Liu Y, He LL, Liu B, Zhang SY, Ye X, Jing JJ, Zhang JF, Gao M, Wang X (2015) Spectroscopic investigation on the food components–drug interaction: the influence of flavonoids on the affinity of nifedipine to human serum albumin. Food Chem Toxic 78:42–51

    Article  CAS  Google Scholar 

  22. Gokara M, Kimavath GB, Podile AR, Subramanyam R (2015) Differential interactions and structural stability of chitosan oligomers with human serum albumin and α-1-glycoprotein. J Biomol Struct Dyn 33:196–210

    Article  PubMed  CAS  Google Scholar 

  23. Wu D, Zhai YM, Yan J, Xu KL, Wang Q, Li YZ, Li H (2015) Binding mechanism of tauroursodeoxycholic acid to human serum albumin: insights from NMR relaxation and docking simulations. RSC Adv 5:11036–11042

    Article  CAS  Google Scholar 

  24. Fu JX, Ge YS, Jiang FL, Sun XH, Liu Y, Liu Y (2011) Spectroscopic and molecular modeling studies on the interaction between a fluorine-containing triazole derivative and human serum albumin. Biol Trace Elem Res 143:562−578

  25. Fan XY, Zhang Y, Wang J, Yang LY, Jiang FL, Liu Y (2014) Exploring the interaction between rotenone and human serum albumin. J Chem Thermodyn 69:206–210

    Article  CAS  Google Scholar 

  26. Liu YY, Yu QQ, Wang C, Sun DD, Huang YC, Zhou YH, Liu J (2012) Ruthenium (II) complexes binding to human serum albumin and inducing apoptosis of tumor cells. Inorg Chem Commun 24:104–109

    Article  CAS  Google Scholar 

  27. Sun J, Huang YC, Zheng CP, Zhou YH, Liu Y, Liu J (2015) Ruthenium (II) complexes interact with human serum albumin and induce apoptosis of tumor cells. Biol Trace Elem Res 163:266–274

    Article  PubMed  CAS  Google Scholar 

  28. Lei XL, Su W, Li PY, Xiao Q, Huang S, Qian QQ, Huang CS, Qin DN, Lan HX (2014) Ruthenium(II) arene complexes of curcuminoids: synthesis, X-ray diffraction structure and cytotoxicity. Polyhedron 81:614–618

    Article  CAS  Google Scholar 

  29. Zhang GJ, Keita B, Craescu CT, Miron S, Oliveira PD, Nadjo L (2007) Polyoxometalate binding to human serum albumin: a thermodynamic and spectroscopic approach. J Phys Chem B 111:11253–11259

    Article  PubMed  CAS  Google Scholar 

  30. Dong AC, Huang P, Caughey WS (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29:3303–3308

    Article  PubMed  CAS  Google Scholar 

  31. Yue YY, Liu JM, Fan J, Yao XJ (2011) Binding studies of phloridzin with human serum albumin and its effect on the conformation of protein. J Pharm Biomed Anal 56:336–342

    Article  PubMed  CAS  Google Scholar 

  32. Huang S, Zhu FW, Xiao Q, Zhou Q, Su W, Qiu HN, Huang CS, Hu BQ, Sheng JR, Huang CS (2014) Combined spectroscopy and cyclic voltammetry investigates the interaction between [(η 6-p-cymene)Ru(benzaldehyde-N(4)-phenylthiosemicarbazone)Cl]Cl anticancer drug and human serum albumin. RSC Adv 4:36286–36300

    Article  CAS  Google Scholar 

  33. Huang S, Zhu FW, Qian QQ, Xiao Q, Su W (2015) Thermodynamic investigation of interaction between [(η 6-p-cymene) RuII(acetone-N 4-phenylthiosemicarbazone)Cl]Cl anticancer drug and human serum albumin: spectroscopic and electrochemical studies. Biol Trace Elem Res 164:150–161

    Article  PubMed  CAS  Google Scholar 

  34. Lakowicz JR (2006) Principles of fluorescence spectroscopy 3rd ed. Plenum, New York

    Book  Google Scholar 

  35. Watt RM, Voss EW (1979) Solvent perturbation of the fluorescence of fluorescein bound to specific antibody. J Biol Chem 254:1684–1690

    PubMed  CAS  Google Scholar 

  36. Huang S, Zhu FW, Qiu HN, Xiao Q, Zhou Q, Su W, Hu BQ (2014) A sensitive quantum dots-based “OFF-ON” fluorescent sensor for ruthenium anticancer drugs and ctDNA. Colloids Surf B 117:240–247

    Article  CAS  Google Scholar 

  37. Leckband D (2000) Measuring the forces that control protein interactions. Annu Rev Biophys Biomol Struct 29:1–26

    Article  PubMed  CAS  Google Scholar 

  38. Ross DP, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  PubMed  CAS  Google Scholar 

  39. Carter DC, He XM, Munson SH, Twigg PD, Gernert KM, Broom MB, Miller TY (1989) Three-dimensional structure of human serum albumin. Science 244:1195–1198

    Article  PubMed  CAS  Google Scholar 

  40. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  PubMed  CAS  Google Scholar 

  41. Epps DE, Raub TJ, Kézdy FJ (1995) A general wide-range spectrofluorometric method for measuring the site-specific affinities of drugs toward human serum albumin. Anal Biochem 227:342–350

    Article  PubMed  CAS  Google Scholar 

  42. Hu YJ, Liu Y, Xiao XH (2009) Investigation of the interaction between berberine and human serum albumin. Biomacromolecules 10:517–521

    Article  PubMed  CAS  Google Scholar 

  43. Ge YS, Jin C, Song Z, Zhang JQ, Jiang FL, Liu Y (2014) Multi-spectroscopic analysis and molecular modeling on the interaction of curcumin and its derivatives with human serum albumin: a comparative study. Spectrochim. Acta A 124:265–276

    Article  CAS  Google Scholar 

  44. Bian HD, Li M, Yu Q, Chen ZF, Tian JN, Liang H (2006) Study of the interaction of artemisinin with bovine serum albumin. Int J Biol Macromol 39:291–297

    Article  PubMed  CAS  Google Scholar 

  45. Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75

    Article  Google Scholar 

  46. Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  47. Valeur B, Brochon JC (1999) New trends in fluorescence spectroscopy. Springer Press, Berlin 25

    Google Scholar 

  48. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley Press, New York 250

    Book  Google Scholar 

  49. Qin PF, Liu RT, Pan XR, Fang XY, Mou Y (2010) Impact of carbon chain length on binding of perfluoroalkyl acids to bovine serum albumin determined by spectroscopic methods. J Agric Food Chem 58:5561–5567

    Article  PubMed  CAS  Google Scholar 

  50. Bi SY, Pang B, Wang TJ, Zhao TT, Yu W (2014) Investigation on the interactions of clenbuterol to bovine serum albumin and lysozyme by molecular fluorescence technique. Spectrochim Acta Part A 120:456–461

    Article  CAS  Google Scholar 

  51. Samari F, Hemmateenejad B, Shamsipur M, Rashidi M (2012) Affinity of two novel five-coordinated anticancer Pt(II) complexes to human and bovine serum albumins: a spectroscopic approach. Inorg Chem 51:3454–3464

    Article  PubMed  CAS  Google Scholar 

  52. Chen ZY, Xu HY, Zhu YL, Liu JY, Wang KY, Wang PX, Shang SJ, Li XN, Wang ZL, Shao W, Zhang SD (2014) Understanding the fate of an anesthetic, nalorphine upon interaction with human serum albumin: a photophysical and mass-spectroscopy approach. RSC Adv 4:25410–25419

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21403039, 21203035, 21261005, 21225313), the Guangxi Natural Science Foundation (2013GXNSFCA019005), the Scientific Research Foundation of Guangxi Provincial Education Department (ZD2014081), the Innovation Project of Guangxi Graduate Education (YCSZ2014186), Open Research Fund Program of the State Key Laboratory of Virology of China (2014KF006), and Collaborative Innovation Center of Southwest Ethnic Medicine (Guangxi Normal University, CICSEM 2013-B6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Peng, S., Zhu, F. et al. Multispectroscopic Investigation of the Interaction Between two Ruthenium(II) Arene Complexes of Curcumin Analogs and Human Serum Albumin. Biol Trace Elem Res 169, 189–203 (2016). https://doi.org/10.1007/s12011-015-0416-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0416-2

Keywords

Navigation