Skip to main content
Log in

Organic Selenium Alleviated the Formation of Ethylene Glycol-Induced Calcium Oxalate Renal Calculi by Improving Osteopontin Expression and Antioxidant Capability in Dogs

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Twenty one-year-old local male dogs were randomly assigned into four groups (five dogs per group). The control and the ethylene glycol (EG) groups were fed basal diets without and with EG, and the EG + sodium selenite (EG + SS) and EG + selenium yeast (EG + SY) groups were fed basal diets with EG containing SS and SY, respectively. Blood, urine, and renal samples were taken after 18 weeks of feeding. The results showed that compared with the control group, the serum calcium levels and antioxidase activities significantly decreased in the EG group. Serum creatinine, urea nitrogen, and malondialdehyde (MDA) levels and urine calcium and oxalate levels significantly increased. Calcium oxalate crystal deposition and osteopontin (OPN) messenger RNA and protein expression in the renal tissues significantly increased. These changes above in the EG group were reversed within limits by adding selenium in the diets (both EG + SS and EG + SY groups). Further, compared with the EG + SS group, the EG + SY group showed better effects in decreasing the formation of EG-induced calcium oxalate renal calculi and OPN expression and improving antioxidant capability in dogs. It indicates that organic selenium has the potential value to alleviate the formation of EG-induced calcium oxalate renal calculi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ettinger SJ, Feldman EC (2000) Textbook of veterinary internal medicine, 5th edn. Saunders, Philadelphia, pp 286–288

    Google Scholar 

  2. Osborne CA, Lulich JP, Kruger JM, Ulrich LK, Koehler LA (2008) Analysis of 451, 891 canine uroliths, feline uroliths, and feline urethral plugs from 1981 to 2007: perspectives from the Minnesota Urolith Center. Vet Clin Small Anim 39:183–197

    Article  Google Scholar 

  3. Coe FL, Evan A, Worcester E (2005) Kidney stone disease. J Clin Invest 115:2598–2608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Monico CG, Rossetti S, Belostotsky R, Cogal AG, Herges RM, Seide BM, Olson JB, Bergstrahl EJ, Williams HJ, Haley WE, Frishberg Y, Milliner DS (2011) Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin J Am Soc Nephrol 6:2289–2295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ogawa Y, Miyazato T, Hatano T (2000) Oxalate and urinary stones. World Surg 24:1154–1159

    Article  CAS  Google Scholar 

  6. Thamilselvan S, Khan SR (1998) Oxalate and calcium oxalate crystals are injurious to renal epithelial cells: results of in vivo and in vitro studies. J Nephrel 11(Suppl 1):66–69

    Google Scholar 

  7. Khan SR (2011) Renal cellular dysfunction or damage and the formation of kidney stones, urinary tract stone disease. Part 1. Springer-Verlag London Limited 61

  8. Koul HK, Koul S, Fu S, Santosham V, Seikhon A, Menon M (1999) Oxalate: from crystal formation to crystal retention. J Am Soc Nephrol 10:417–424

    Google Scholar 

  9. Umekawa T, Iguchi M, Uemura H, Khan SR (2006) Oxalate ions and calcium oxalate crystal-induced up-regulation of osteopontin and monocyte chemoattractant protein-1 in renal fibroblasts. BJU Int 98:656–660

    Article  CAS  PubMed  Google Scholar 

  10. Wiessner JH, Hasegawa AT, Hung LY, Mandel GS, Mandel NS (2001) Mechanisms of calcium oxalate crystal attachment to injured renal collecting duct cells. Kidney Int 59:637–644

    Article  CAS  PubMed  Google Scholar 

  11. Koul H, Kennington L, Honeymen T, Jonassen J, Menon M, Scheid C (1996) Activation of c-myc gene mediates the mitogenic effects of oxalate in LLC-PK1 cells, a line of renal epithelial cells. Kidney Int 50:1525–1530

    Article  CAS  PubMed  Google Scholar 

  12. Thamilselvan S, Byer KJ, Hackett RL, Khan SR (2000) Free radical scavengers catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells. J Urol 164:224–229

    Article  CAS  PubMed  Google Scholar 

  13. Grases F, Garcia FL, Costa BA (1998) Development of calcium oxalate crystals on urothelium effect of free radical. Nephron 78:296–301

    Article  CAS  PubMed  Google Scholar 

  14. Thamilselvan S, Khan SR, Menon M (2003) Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cell: effect of antioxidants. Urol Res 31:3–9

    CAS  PubMed  Google Scholar 

  15. Atmani F, Slimani Y, Mimouni M, Aziz M, Hacht B, Ziyyat A (2004) Effect of aqueous extract from Herniaria hirsuta L. on experimentally nephrolithiasic rats. J Ethnopharmacol 95:87–93

    Article  PubMed  Google Scholar 

  16. Atmani F, Khan SR (2000) Effects of an extract from Herniaria hirsuta on calcium oxalate crystallization in vitro. BJU Int 85:621–625

    Article  CAS  PubMed  Google Scholar 

  17. Menon M, Mahle CJ (1982) Oxalate metabolism and renal calculi. J Urol 127:148–151

    CAS  PubMed  Google Scholar 

  18. Wu QZ, Kuang KX (2004) Effect of long-term Se deficiency on the antioxidant capacities of rat vascular tissue. Biol Trace Elem Res 98:73–84

    Article  CAS  PubMed  Google Scholar 

  19. Zhan XA, Wang M, Zhao RQ, Li WF, Xu ZR (2007) Effect of different selenium source on selenium distribution, loin quality and antioxidant status in finishing pigs. Anim Feed Sci Tech 132:202–211

    Article  CAS  Google Scholar 

  20. Adhirai M, Selvam R (1998) Effect of cyclosporin on liver antioxidants and the protective role of vitamin E in hyperoxaluria in rats. Pharm Pharmacol 50:501–505

    Article  CAS  Google Scholar 

  21. Anbazhagan M, Hariprasad C, Samudram P, Latha E, Latha M, Selvam R (1999) Effect of oral supplementation of vitamin E on urinary risk factors in patients with hyperoxaluria. Clin Biochem Nutr 27:37–47

    Article  CAS  Google Scholar 

  22. Mani SK, Ramasamy S (2003) Supplementation of vitamin E and selenium prevents hyperoxaluria in experimental urolithic rats. Nutr Biochem 14:306–313

    Article  Google Scholar 

  23. Thamilselvan S, Menon M (2005) Vitamin E therapy prevents hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. BJU Int 96:117–126

    Article  CAS  PubMed  Google Scholar 

  24. Kohri K, Yasui T, Okada A, Hirose M, Hamamoto S, Fujii Y, Niimi K, Taguchi K (2012) Biomolecular mechanism of urinary stone formation involving osteopontin. Urol Res 40:623–637

    Article  CAS  PubMed  Google Scholar 

  25. Kleinman JG, Wesson JA, Hughes J (2004) Osteopontin and calcium stone formation. Nephron Physiol 98:43–47

    Article  Google Scholar 

  26. Wesson JA, Johnson RJ, Mazzail M (2003) Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 14:139–147

    Article  CAS  PubMed  Google Scholar 

  27. Burger I (1995) Updated feeding recommendations for the canine diet. Waltham Focus 5:32

    Google Scholar 

  28. Stevenson AE, Hynds WK, Markwell PJ (2003) The relative effects of supplemental dietary calcium and oxalate on urine composition and calcium oxalate relative supersaturation in healthy adult dogs. Res Vet Sci 75:33–41

    Article  CAS  PubMed  Google Scholar 

  29. Zhao ZP, Huang KH, Ren ZH, Wang YG (2009) Effects of selenium and zinc-enriched probiotics on blood content of selenium and zinc, antioxidation function and intestinal mircroflora in canines. Acta Nutrimenta Sinica 31:159–163

    CAS  Google Scholar 

  30. Passlack N, Zentek J (2013) Urinary calcium and oxalate excretion in healthy adult cats are not affected by increasing dietary levels of bone meal in a canned diet. PLoS One 8, e70530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ye GP, Zhu YX, Liu J, Chen XX, Huang KH (2014) Preparation of glycerol-enriched yeast culture and its effect on blood metabolites and ruminal fermentation in goats. PLoS One 9:e94410

    Article  PubMed Central  PubMed  Google Scholar 

  32. Pan CL, Zhao YX, Liao SF, Chen F, Qin SY, Wu XS, Zhou H, Huang KH (2011) Effect of selenium-enriched probiotics on laying performance, egg quality, egg selenium content, and egg glutathione peroxidase activity. Agric Food Chem 59:11424–11431

    Article  CAS  Google Scholar 

  33. Notoya M, Nishimura H, Woo JT, Nagai K, Ishihara Y, Hagiwara H (2006) Curcumin inhibits the proliferation and mineralization of cultured osteoblasts. Eur J Pharmacol 534:55–62

    Article  CAS  PubMed  Google Scholar 

  34. Wu X, Huang K, Wei C (2010) Regulation of cellular glutathione peroxidase by different forms and concentrations of selenium in primary cultured bovine hepatocytes. J Nutr Biochem 21:153–161

    Article  CAS  PubMed  Google Scholar 

  35. Kohri K, Yasui T, Okada A, Hirose M, Hamamoto S, Fujii Y, Niimi K, Taguchi K (2012) Role of osteopontin in early phase of renal crystal formation: immunohistochemical and microstructural comparisons with osteopontin knock-out mice. Urol Res 40:121–129

    Article  PubMed  Google Scholar 

  36. Wang SX, Wu JP (1987) Nephrology, 2nd edn. People’s Medical Publishing House, Beijing, pp 122–127

    Google Scholar 

  37. Umekawa T (1999) Structural characteristics of osteopontin for calcium oxalate crystal. Jpn J Urol 90:436–444

    Article  CAS  Google Scholar 

  38. Ouyang JM, Yao XQ, Tan J, Wang FX (2011) Renal epithelial cell injury and its promoting role in formation of calcium oxalate monohydrate. J Biol Inorg Chem 16:405–416

    Article  CAS  PubMed  Google Scholar 

  39. Selvam R (2002) Calcium oxalate stone disease: role of lipid peroxidation and antioxidants. Urol Res 30:35–47

    Article  CAS  PubMed  Google Scholar 

  40. Schwille PO, Manoharan M, Schmiedl A (2005) Is idiopathic recurrent calcium urolithiasis in males a cellular disease? Laboratory findings in plasma, urine and erythrocytes, emphasizing the absence and presence of stones, oxidative and mineral metabolism: an observational study. Clin Chem Lab Med 43:590–600

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (NSFC) (Grant numbers 31272627, 31472253) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehe Huang.

Additional information

Yongwang Liu and Haibin Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, H., Zhong, W. et al. Organic Selenium Alleviated the Formation of Ethylene Glycol-Induced Calcium Oxalate Renal Calculi by Improving Osteopontin Expression and Antioxidant Capability in Dogs. Biol Trace Elem Res 168, 392–400 (2015). https://doi.org/10.1007/s12011-015-0373-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0373-9

Keywords

Navigation