Skip to main content
Log in

Dietary Chitosan Supplementation Ameliorates Isoproterenol-Induced Aberrations in Membrane-Bound ATPases and Mineral Status of Rat Myocardium

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Myocardial infarction is one of the major public concerns in both developed and developing countries. Recently, there is growing interest in potential healthcare applications of marine natural products in the field of cardiovascular research. In the present study, we have examined the membrane-stabilizing potential of marine mucopolysaccharide-chitosan in modulating the aberrations of thiol-dependent membrane-bound ATPases activities, mineral status, and cardiac diagnostic markers in isoproterenol-induced myocardial infarction condition in rats. Dietary intake of chitosan significantly (p < 0.05) counteracted the isoproterenol-induced lipid peroxidation and maintained the levels of thiol contents and cardiac biomarkers at concentrations analogous to that of normal controls in the rat myocardium. Chitosan administration also significantly mitigated isoproterenol-induced aberrations in the membrane-bound ATPase activities in the heart tissue and preserved the myocardial mineral status in serum and heart tissue of experimental rats at near normal value. The results of the present study have indicated that the salubrious effect of dietary chitosan supplementation in attenuating the experimentally induced myocardial infarction condition is probably ascribable to its antioxidant defense and membrane-stabilizing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Tilak-Jain JA, Devasagayam TPA (2006) Cardioprotective and other beneficial effects of some Indian medicinal plants. J Clin Biochem Nutr 38:9–18

    Article  CAS  Google Scholar 

  2. Farvin KHS, Anandan R, Kumar SHS, Shiny KS, Mathew S, Sankar TV, Nair PGV (2006) Cardioprotective effect of squalene on lipid profile in isoprenaline-induced myocardial infarction in rats. J Med Food 9:531–536

    Article  CAS  PubMed  Google Scholar 

  3. WHO (2004) Atlas of heart disease and stroke

  4. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364:937–952

    Article  PubMed  Google Scholar 

  5. Farvin KHS, Anandan R, Kumar SHS, Shiny KS, Sankar TV, Thankappan TK (2004) Effect of squalene on tissue defense system in isoproterenol-induced myocardial infarction in rats. Pharmacol Res 50:231–236

    Article  CAS  Google Scholar 

  6. Cardenas G, Orlando P, Edelio T (2001) Synthesis and applications of chitosan mercaptanes as heavy metal retention agent. Int J Biol Macromol 28:167–174

    Article  CAS  PubMed  Google Scholar 

  7. Santhosh S, Sini TK, Anandan R, Mathew PT (2006) Effect of chitosan supplementation on antitubercular drugs-induced hepatotoxicity in rats. Toxicology 219:53–59

    Article  CAS  PubMed  Google Scholar 

  8. XingR LS, GuoZ YH, WangP LC, LiZ LP (2005) Relevance of molecular weight of chitosan and its derivatives and their antioxidant activities in vitro. Bioorg Med Chem 13:1573–1577

    Article  Google Scholar 

  9. Filipovic-Grcic J, Skalko-Basnet N, Jalsenjak I (2001) Mucoadhesive chitosan-coated liposomes: characteristics and stability. J Microencapsul 18:3–12

    Article  CAS  PubMed  Google Scholar 

  10. Anandan R, Ganesan B, Obulesu T, Mathew S, Asha KK, Lakshmanan PT, Zynudheen AA (2013) Antiaging effect of dietary chitosan supplementation on glutathione-dependent antioxidant system in young and aged rats. Cell Stress Chaperones 18:121–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Anandan R, Nair PG, Mathew S (2004) Anti-ulcerogenic effect of chitin and chitosan on mucosal antioxidant defence system in HCl-ethanol-induced ulcer in rats. J Pharm Pharmacol 56:265–269

    Article  CAS  PubMed  Google Scholar 

  12. Sivakumar R, Rajesh R, Buddhan S, Jeyakumar R, Rajaprabhu D, Ganesan B, Anandan A (2007) Antilipidemic effect of chitosan against experimentally induced myocardial infarction in rats. J Cell Anim Biol 1:71–77

    Google Scholar 

  13. Anandan R, Mathew S, Sankar TV, ViswanathanNair PG (2007) Protective effects of n-3 polyunsaturated fatty acids concentrate on isoproterenol-induced myocardial infarction in rats. Prostaglandins Leukot Essent Fat Acids 76:153–158

    Article  CAS  Google Scholar 

  14. Anandan R, Ganesan B, Obulesu T, Mathew S, Kumar RS, Lakshmanan PT, Zynudheen AA (2012) Dietary chitosan supplementation attenuates isoprenaline-induced oxidative stress in rat myocardium. Int J Biol Macromol 51:783–787

    Article  CAS  PubMed  Google Scholar 

  15. Ohkawa H, Onishi N, Yagi K (1979) Assay for lipid peroxides in animal tissue by thiobabituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  16. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  CAS  PubMed  Google Scholar 

  17. BontingSL (1970) Sodium pottasuim activated adenosine triphosphatase and carbon transport. In: Membrane and iron transport, Vol.I.(Bittar, E. E. Ed.),Wiley-Interscience, London, pp. 257-363

  18. Ohnishi T, Suzuki T, Suzuki Y, Ozawa KA (1982) Comparative study of plasma membrane Mg2+-ATPase activities in normal, regenerating and malignant cells. Biochim Biophys Acta 684:67–74

    Article  CAS  PubMed  Google Scholar 

  19. Hjerten S, Pan H (1983) Purification and characterization of two forms of low affinity calcium ion ATPase from erythrocyte membranes. Biochim Biophys Acta 755:457–466

    Article  Google Scholar 

  20. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  21. AOAC (1980) Atomic absorption methods of fish. Official Methods of Analysis. Association of Official Analytical Chemists. 13th edition, Washington, DC.p.399

  22. Yuan CS (2002) Methods and composition for assaying analytes. U. S. patent No US 6.376.210 B.1.

  23. Suzuki S, Kancko M, Chapman DC, Dhalla NS (1991) Alterations in cardiac contractile proteins due to oxygen free radicals. Biochim Biophys Acta 1074:95–100

    Article  CAS  PubMed  Google Scholar 

  24. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673

    Article  CAS  PubMed  Google Scholar 

  25. Xie ZJ, Wang YH, Askari A, Huang WH, Klaunig JE, Askari A (1990) Studies on the specificity of the effects of oxygen metabolites on cardiac sodium pump. J Mol Cell Cardiol 22:911–920

    Article  CAS  PubMed  Google Scholar 

  26. Morris TE, Sulakhe PV (1997) Sarcoplasmic reticulum Ca(2+)-pump dysfunction in rat cardiomyocytes briefly exposed to hydroxyl radicals. Free Radic Biol Med 22:37–47

    Article  CAS  PubMed  Google Scholar 

  27. Zhang XQ, Moore RL, Tillotson DL, Cheung JY (1995) Calcium currents in postinfarction rat cardiac myocytes. Am J Physiol 269:C1464–C1473

    CAS  PubMed  Google Scholar 

  28. Bironaite D, Ollinger K (1997) Hepato toxicity of rhein involves impairment of mitochondrial functions. Chem Biol Interact 103:35–50

    Article  CAS  PubMed  Google Scholar 

  29. Sun T, Yao Q, Zhou D, Mao F (2008) Antioxidant activity of N-carboxymethyl chitosan oligosaccharides. Bioorg Med Chem Lett 18:5774–5776

    Article  CAS  PubMed  Google Scholar 

  30. Tomida H, Fujii T, Furutani N, Michihara A, Yasufuku T, Akasaki K, Maruyama T, Otagiri M, Gebicki JM, Anraku M (2009) Antioxidant properties of some different molecular weight chitosans. Carbohydr Res 344:1690–1696

    Article  CAS  PubMed  Google Scholar 

  31. Namikawa K, Okazaki Y, Nishida S, Tomura T, Hashimoto S (1992) Studies on early change in myocardial electrolytes and histological reaction in isoproterenol induced myocardial injury. Yakugaka Zasshi 111:247–252

    Google Scholar 

  32. Sandmann S, Min JY, Meissner A, Unger T (1999) Effects of the calcium channel antagonist mibefradilon haemodynamic parameters and myocardial Ca(2+)-handling in infarct-induced heart failure in rats. Cardiovasc Res 44:67–80

    Article  CAS  PubMed  Google Scholar 

  33. Sathish V, Ebenezar KK, Devaki T (2003) Synergistic effect of Nicorandil and Amlodipine on tissue defense system during experimental myocardial infarction in rats. Mol Cell Biochem 243:133–138

    Article  CAS  PubMed  Google Scholar 

  34. Min JY, Meissner A, Feng X, Wang J, Malek S, Wang JF, Simon R, Morgan JP (2003) Dantrolene: effects on abnormal intracellular Ca(2+)-handling and inotropy in postinfarcted rat myocardium. Eur J Pharmacol 471:41–47

    Article  CAS  PubMed  Google Scholar 

  35. Horward A, Barley NF, Legon S, Walter JR (1994) Plasma membrane calcium pump isoforms in human and rat liver. Biochem J 303:275–279

    Google Scholar 

  36. Vincenzi FF (1971) A calcium pump in red cell membranes, In Cellular mechanisms for calcium transfer and homeostasis, (Nicholas, G. and Wasserman, R. H.Eds.), Academic press, NewYork, pp.135-148

  37. Liu HT, Li WM, Xu G, Li XY, Bai XF, Wei P, Yu C, Du YG (2009) Chitosan oligosaccharides attenuate hydrogen peroxide-induced stress injury in human umbilical vein endothelial cells. Pharmacol Res 59:167–175

    Article  CAS  PubMed  Google Scholar 

  38. Anraku M, Fujii T, Furutani N, Kadowaki D, Maruyama T, Otagiri M, Gebicki JM, Tomida H (2009) Antioxidant effects of a dietary supplement: reduction of indices of oxidative stress in normal subjects by water-soluble chitosan. Food Chem Toxicol 47:104–109

    Article  CAS  PubMed  Google Scholar 

  39. Yuan WP, Liu B, Liu CH, Wang XJ, Zhang MS, Meng XM, Xia XK (2009) Antioxidant activity of chito-oligosaccharides on pancreatic islet cells in streptozotocin-induced diabetes in rats. World J Gastroenterol 15:1339–1345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Tawakol A, Forgione MA, Stuehlinger M, Alpert NM, Cooke JP, Loscalzo J, Fischman AJ, Creager MA, Gewirtz H (2002) Homocysteine impairs coronary microvascular dilator function in humans. J Am Coll Cardiol 40:1051–1058

    Article  CAS  PubMed  Google Scholar 

  41. Farvin KHS, Anandan R, Kumar SHS, Mathew S, Sankar TV, Nair PGV (2009) Biochemical studies on the cardioprotective effect of squalene against isoprenaline-induced myocardial infarction in rats. Fish Technol 46:139–150

    CAS  Google Scholar 

Download references

Acknowledgments

The financial aid in the form of ICAR National Fellow from the Indian Council of Agricultural Research for Dr. R. Anandan is gratefully acknowledged. The authors thank the Director, Central Institute of Fisheries Technology, Cochin, for granting permission to publish this paper. The technical assistance rendered by Ms P.A. Jaya and Dr. G. Usha Rani is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rangasamy Anandan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandan, R., Chatterjee, N.S., Sivakumar, R. et al. Dietary Chitosan Supplementation Ameliorates Isoproterenol-Induced Aberrations in Membrane-Bound ATPases and Mineral Status of Rat Myocardium. Biol Trace Elem Res 167, 103–109 (2015). https://doi.org/10.1007/s12011-015-0289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0289-4

Keywords

Navigation