Skip to main content
Log in

Controlled Diet in Phenylketonuria and Hyperphenylalaninemia may Cause Serum Selenium Deficiency in Adult Patients: The Czech Experience

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Phenylketonuria is an inherited disorder of metabolism of the amino acid phenylalanine caused by a deficit of the enzyme phenylalanine hydroxylase. It is treated with a low-protein diet containing a low content of phenylalanine to prevent mental affection of the patient. Because of the restricted intake of high-biologic-value protein, patients with phenylketonuria may have lower than normal serum concentrations of pre-albumin, selenium, zinc and iron. The objective of the present study was to assess the compliance of our phenylketonuric (PKU) and hyperphenylalaninemic (HPA) patients; to determine the concentration of serum pre-albumin, selenium, zinc and iron to discover the potential correlation between the amount of proteins in food and their metabolic control. We studied 174 patients of which 113 were children (age 1–18), 60 with PKU and 53 with HPA and 61 were adults (age 18–42), 51 with PKU and 10 with HPA. We did not prove a statistically significant difference in the concentration of serum pre-albumin, zinc and iron among the respective groups. We proved statistically significant difference in serum selenium concentrations of adult PKU and HPA patients (p = 0.006; Mann–Whitney U test). These results suggest that controlled low-protein diet in phenylketonuria and hyperphenylalaninemia may cause serum selenium deficiency in adult patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crone MR, van Sprosen FJ, Oudshoorn K, Bekhof J, van Rijn G, Verkerk PH (2005) Behavioral factors related to metabolic control in patients with phenylketonuria. J Inherit Metab Dis 28:627–637

    Article  PubMed  CAS  Google Scholar 

  2. Rocha JC, Almeida MF, Carmona C, Cardoso ML, Borges N, Soares I, Salcedo G, Lima MR, Azevedo I, van Spronsen FJ (2010) The use of prealbumin concentrations as a biomarker of nutritional status in treated phenylketonuric patients. Ann Nutr Metab 56:207–211. doi:10.1159/000276641

    Article  PubMed  CAS  Google Scholar 

  3. Arnold GL, Vladutiu CJ, Kirby RS, Blakely EM, Deluca JM (2002) Protein insuffiency and linear growth restriction in phenylketonuria. J Pediatr 141:243–246

    Article  PubMed  CAS  Google Scholar 

  4. Dobbelaere D, Michaud L, Debrabander S, Vanderbecken A, Gottrand F, Turck D, Farriaux JP (2003) Evaluation of nutritional status and pathophysiology of growth retardation in patients with phenylketonuria. J Inherit Metab Dis 26:1–11

    Article  PubMed  CAS  Google Scholar 

  5. Lombeck I, Bremer HJ (1977) Primary and secondary disturbances in trace element metabolism connected with genetic metabolic disorders. Nutr Metab 21:49–64

    PubMed  CAS  Google Scholar 

  6. Reilly C, Barrett JE, Patterson CM, Tinggi U, Latham SL, Martinam A (1990) Trace element nutrition status and dietary intake of children with phenylketonuria. Am J Clin Nutr 52:159–165

    PubMed  CAS  Google Scholar 

  7. Van Bakel MM, Printzen G, Wermuth B, Wiesmann UN (2000) Antioxidant and thyroid status in selenium-deficient phenylketonuric and hyperphenylalaninemic patients. Am J Clin Nutr 72:976–981

    PubMed  Google Scholar 

  8. Miranda da Cruz BD, Seidler H, Widhalm K (1993) Iron status and iron supplementation in children with classical phenylketonuria. J Am Coll Nutr 12:531–536

    PubMed  CAS  Google Scholar 

  9. Bodley JL, Austin VJ, Hanley WB, Clarke JT, Zlotkin S (1993) Low iron status in infants and children with treated phenylketonuria: a population at risk for iron-deficiency anaemia and associated cognitive deficits. Eur J Pediatr 152:140–143

    Article  PubMed  CAS  Google Scholar 

  10. Acosta PB, Yanicelli S, Singh RH, Elsa LJ II, Morici S, Steiner RD (2004) Iron status of children with phenylketonuria undergoing nutrition therapy assessed by transferrin receptors. Genet Med 6:96–101

    Article  PubMed  CAS  Google Scholar 

  11. Acosta PB (1996) Nutrition studies in treated infants and children with phenylketonuria: vitamins, minerals, trace elements. Eur J Pediatr 155:S136–139

    Article  PubMed  CAS  Google Scholar 

  12. Hvas AM, Nexo E, Nielsen JB (2006) Vitamin B12 and vitamin B6 supplementation is needed among adults with phenylketonuria (PKU). J Inherit Metab Dis 29:47–53

    Article  PubMed  CAS  Google Scholar 

  13. Robinson M, White FJ, Cleary MA, Wraith EJ, Lam WK, Walter JH (2000) Increased risk of vitamin B12 deficiency in patients with phenylketonuria on an unrestricted or relaxed diet. J Pediatr 136:545–547

    Article  PubMed  CAS  Google Scholar 

  14. Vugteveen I, Hoeksma M, Monsen AL, Fokkema MR, Reijngoud DJ, van Rijn M, van Spronsen FJ (2011) Serum vitamin B12 concentrations within reference values do not exclude functional vitamin B12 deficiency in PKU patients of various ages. Mol Genet Metabol 102:13–17. doi:10.1016/j.ymgme.2010.07.004

    Article  CAS  Google Scholar 

  15. Koletzko B, Sauerwald T, Demmelmair H, Herzog M, von Schenck U, Bohles H, Wendel U, Seidel J (2007) Dietary long-chain polyunsaturated fatty acid supplementation in infants with phenylketonuria: a randomized controlled trial. J Inherit Metab Dis 30:326–332

    Article  PubMed  CAS  Google Scholar 

  16. Vilaseca MA, Briones P, Ferrer I, Campistol J, Riverola A, Castillo P, Ramon F (1993) Controlled diet in phenylketonuria may cause serum carnitine deficiency. J Inherit Metab Dis 16:101–104

    Article  PubMed  CAS  Google Scholar 

  17. Weigel C, Kiener C, Meier N, Schmidt P, Rauh M, Rascher W, Knerr I (2008) Carnitine status in early-treated children, adolescents and young adults with phenylketonuria on low phenylalanine diets. Ann Nutr Metab 53:91–95. doi:10.1159/000165356

    Article  PubMed  CAS  Google Scholar 

  18. Zeman J, Bayer M, Stepan J (1999) Bone mineral density in patients with phenylketonuria. Acta Pediatr 88:1348–1351

    Article  CAS  Google Scholar 

  19. Modan-Moses D, Vered I, Schwarz G (2007) Peak bone mass in patients with phenylketonuria. J Inherit Metab Dis 30:202–208

    Article  PubMed  CAS  Google Scholar 

  20. Shils ME, Olson JA, Shike M, Ross AC (1999) Modern nutrition in health and disease, 9th edn. Williams and Wilkins, Baltimore, pp 1003–1056

    Google Scholar 

  21. Blau N, Hoffmann GF, Leonard J, Clarke JTR (2006) Physician’s guide to the treatment and follow-up of metabolic diseases, 1st edn. Springer, Berlin-Heidelberg, p 28

    Book  Google Scholar 

  22. Dastych M, Prochazkova D, Pokorny A, Zdražil L (2010) Copper and zinc in the serum, urine, and hair of patients with Wilson’s disease treated with penicillamine and zinc. Biol Trace Element Res 133:265–269. doi:10.1007/s12011-009-8430-2

    Article  CAS  Google Scholar 

  23. Gropper SS, Gropper DM, Acosta PB (1993) Plasma amino acid response to ingestion of l-amino acids and whole protein. J Pediatr Gastroenterol Nutr 16:143–150

    Article  PubMed  CAS  Google Scholar 

  24. MacDonald A, Rocha JC, van Rijn M, Feillet F (2011) Nutrition in phenylketonuria. Mol Genet Metabol 104:S10–S18. doi:10.1016/j.ymgme.2011.08.023

    Article  CAS  Google Scholar 

  25. Barretto JR, Silva RL, Leite ME, Boa-Sorte N, Pimentel H, Purificacao AC, Carvalho G, Fontes MI, Amorim T (2008) Poor zinc and selenium status in phenylketonuric children and adolescents in Brazil. Nutr Res 28:208–211. doi:10.1016/j.nutres.2007.12.009

    Article  PubMed  CAS  Google Scholar 

  26. Kvíčala J (2003) Increase of micronutrient selenium—utopia, fiction, prevision or a must. Part II. Intern Med Practice 6:295–300

    Google Scholar 

  27. Muntau AC, Streiter M, Kappler M, Roschinger W, Schmidt I, Rehnert A, Schramel P, Fischer AA (2002) Age-related reference values for serum selenium concentrations in infants and children. Clin Chem 48:555–560

    PubMed  CAS  Google Scholar 

  28. Fisberg RM, DaSilva-Fernandes ME, Fisberg M, Schmidt BJ (1999) Plasma zinc, copper, and erythrocyte superoxide dismutase in children with phenylketonuria. Nutrition 15:449–452

    Article  PubMed  CAS  Google Scholar 

  29. Acosta PB, Yanicelli S (1999) Plasma micronutrient concentrations in infants undergoing therapy for phenylketonuria. Biol Trace Elem Res 67:75–84

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Our thanks go to all the staff of the Department of Biochemistry, University Hospital Brno for elaboration of the biological material of our patients and to the firm Nutricia a.s. Czech Republic for their financial support with the collection and statistical processing of data.

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Procházková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Procházková, D., Jarkovský, J., Vinohradská, H. et al. Controlled Diet in Phenylketonuria and Hyperphenylalaninemia may Cause Serum Selenium Deficiency in Adult Patients: The Czech Experience. Biol Trace Elem Res 154, 178–184 (2013). https://doi.org/10.1007/s12011-013-9724-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9724-6

Keywords

Navigation