Skip to main content
Log in

Protective Effects of Gallium, Germanium, and Strontium Against Ovariectomized Osteoporosis in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effects of trace elements of gallium (Ga), germanium (Ge), and strontium (Sr) on ovariectomized (OVX) osteopenic rats were studied in this paper. The urine calcium content, serum calcium, and phosphorus contents, bone mineral content, mineral dissolution, and mechanical strength of the osteopenic rats were analyzed respectively. After the rats were fed with Ga, Ge, and Sr diet for 8 weeks, respectively, the urine calcium content decreased (P < 0.01). Plasma calcium and phosphate concentrations decreased in the order of OVX group > Ge group > Sr group > Ga group > Sham group. Mineral content increased in the order of OVX group < Ge group < Sr group < Ga group < Sham group. A dramatic decrease in calcium solubility was found both in the gallium and strontium treated animals (P < 0.05). However, the same result did not occur in germanium treated groups. The data provide an important proof of concept that gallium and strontium might be a new potential therapy for the management of postmenopausal osteoporosis in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Han C, Li J, Hui Q (2008) Determination of trace elements in Jinqi a traditional Chinese medicine. Biol Trace Elem Res 122:122–126

    Article  PubMed  CAS  Google Scholar 

  2. Chausmer AB (1998) Zinc, insulin and diabetes. J Am Coll Nutr 17:109–115

    PubMed  CAS  Google Scholar 

  3. Anderson RA, Cheng N, Bryden NA et al (1997) Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 46:1786–1791

    Article  PubMed  CAS  Google Scholar 

  4. Kimura K (1996) Role of essential trace elements in the disturbance of carbohydrate metabolism. Nippon Rinsho 54:79–84

    PubMed  CAS  Google Scholar 

  5. No authors listed (1991) Consensus development conference: diagnosis, prophylaxis and treatment of osteoporosis. Osteoporos Int 1:114–117

    Google Scholar 

  6. Hart MM, Smith CF, Yancey ST, Adamson RH (1971) Toxicity and antitumor activity of gallium nitrate and periodically related metal salts. J Natl Cancer Inst 47:1121–1127

    PubMed  CAS  Google Scholar 

  7. Hart MM, Adamson RH (1971) Antitumor activity and toxicity of salts of inorganic group IIIa metals: aluminum, gallium, indium, and thallium. Proc Natl Acad Sci USA 68:1623–1626

    Article  PubMed  CAS  Google Scholar 

  8. Dudley HC, Maddox GE (1971) Deposition of radio gallium (72Ga) in skeletal tissues. J Pharmacol Exp Ther 96:224–227

    Google Scholar 

  9. Anghileri L (1949) Studies on the accumulation mechanisms of radioisotopes used in tumor diagnostic. Strahlentherapie 142:456–462

    Google Scholar 

  10. Schroeder HA, Balassa JJ (1967) Abnormal trace metals in man: germanium. J Chronic Dis 20:211–224

    Article  PubMed  CAS  Google Scholar 

  11. Hammett FS, Nowrey JE Jr, Muller JH (1922) The erythropoietic action of germanium dioxide. J Exp Med 35:173–180

    Article  PubMed  CAS  Google Scholar 

  12. Supesteun AK, Rukens F, van der Kerk GJM (1964) Antimicrobial activity of derivatives. Nature 201:736

    Google Scholar 

  13. Suzuki F, Brutkiewicz RR, Pollard RB (1985) Ability of sera from mice treated with Ge-132, an organic germanium compound, to inhibit experimental murine ascites tumours. Br J Cancer 52:757–763

    Article  PubMed  CAS  Google Scholar 

  14. Kuga N, Oboshi S, Sato H, Sato R (1976) Inhibition of senile amyloidosis of mice by biscarboxyethyl germanium sesquioxide. Acta Pathol Jpn 26:63–71

    PubMed  CAS  Google Scholar 

  15. Suzuki F, Brutkiewicz RR, Pollard RB (1986) Cooperation of lymphokine(s) and macrophages in expression of antitumor activity of carboxyethylgermanium sesquioxide (Ge-132). Anticancer Res 6:177–182

    PubMed  CAS  Google Scholar 

  16. Li Hecheng, Song Xiangfang (1995) Experimental therapeutic effect of Germanium-132 on osteoporosis, in The 3rd National Proceedings on Germanium in China, pp 61–68

  17. Peng X, Lingxia Z, Schrauzer GN, Xiong G (2000) Selenium, boron, and germanium deficiency in the etiology of Kashin–Beck disease. Biol Trace Elem Res 77(3):193–197

    Article  PubMed  CAS  Google Scholar 

  18. Morohashi T, Sano T, Yamada S (1994) Effects of strontium on calcium metabolism in rats. I. A distinction between the pharmacological and toxic doses. Jpn J Pharmacol 64:155–162

    Article  PubMed  CAS  Google Scholar 

  19. Marie PJ, Garba MT, Hott M, Miravet L (1985) Effect of low doses of stable strontium on bone metabolism in rats. Miner Electrolyte Metab 11:5–13

    PubMed  CAS  Google Scholar 

  20. Weiss J, Taylor GR, Zimmermann F, Nebendahl K (2000) Collection of body fluids. In: Krinke G (ed) Laboratory rat book. Academic Press, New York, pp 485–510

    Chapter  Google Scholar 

  21. Changrani NR, Chonkar A, Adeghate E (2006) Effects of streptozotocininduced type 1 diabetes mellitus on total protein concentrations and cation contents in the isolated pancreas, parotid, submandibular, and lacrimal glands of rats. Ann N Y Acad Sci 1084:503–519

    Article  PubMed  CAS  Google Scholar 

  22. Repo MA, Bockman RS, Betts F, Boskey AL, Alcock NW, Warrell RP Jr (1988) Effect of gallium on bone mineral properties. Calcif Tissue Int 43(5):300–306

    Article  PubMed  CAS  Google Scholar 

  23. Cho PW, Fox JL, Higuchi WI, Pithayanukul P (1984) Influence of dodecylamine hydrochloride adsorption on the dissolution kinetics of hydroxyapatite. In: Misra DN (ed) Adsorption on and surface chemistry of hydroxyapatite. Plenum Press, New York, pp 51–70

    Google Scholar 

  24. Ma Z, Fu Q (2010) Comparison of the therapeutic effects of yeast-incorporated gallium with those of inorganic gallium on ovariectomized osteopenic rats. Biol Trace Elem Res 134(3):280–287. doi:10.1007/s12011-009-8472-0

    Article  PubMed  CAS  Google Scholar 

  25. Compston JE (2001) Sex steroids and bone. Physiol Rev 81:418–447

    Google Scholar 

  26. Kleerekoper M, Schein JR (2001) Comparative safety of bone remodeling agents with focus on osteoporosis therapies. J Clin Pharmacol 41:239–250

    Article  PubMed  CAS  Google Scholar 

  27. Santen RJ, Pinkerton J, McCartney C, Petroni GR (2004) Risk of breast cancer with progestin in combination with estrogen as hormone replacement therapy. J Clin Endocrinol Metab 86:16–23

    Article  Google Scholar 

  28. Tomita A (1990) Osteoporosis-blood biochemistry. Jpn J Clin Med 48:2838–2844

    CAS  Google Scholar 

  29. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-wei Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Dw., Gu, Z., Dai, L. et al. Protective Effects of Gallium, Germanium, and Strontium Against Ovariectomized Osteoporosis in Rats. Biol Trace Elem Res 153, 350–354 (2013). https://doi.org/10.1007/s12011-013-9694-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9694-8

Key words

Navigation