Skip to main content
Log in

Does Magnesium Supplementation Improve Body Composition and Muscle Strength in Middle-Aged Overweight Women? A Double-Blind, Placebo-Controlled, Randomized Clinical Trial

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Muscle strength, an independent predictor of metabolic disorders, disability, and mortality, reduces gradually with advancing age. Little is known about the influence of nutritional intervention on muscle strength in middle-aged. The aim of the present study is to examine whether magnesium could improve body composition and muscle strength in middle-aged overweight women. In this double-blinded, placebo-controlled, randomized trial, a total of 74 healthy middle-aged overweight women (25 ≤ BMI ≤ 30 kg/m2) received either 250 mg magnesium in the form of magnesium oxide or placebo daily for 8 weeks. Body composition was assessed using Bioelectrical Impedance Analysis (BIA). Handgrip strength and knee extension strength were measured with isometric dynamometry. Functional mobility was assessed using Time Get Up and Go Test (TGUG). A significant increase in mean lean body mass was observed (P = 0.05) accompanied with a significant decrease in fat mass (P = 0.02) solely in the magnesium group at the end of 8 weeks compared to baseline values but the changes did not reach significant as compared to placebo group. Handgrip strength and TGUG improved in the magnesium group compared to baseline but they were not significant compared to placebo. There were no significant differences in increasing knee extension strength in the magnesium group as compared with placebo. Baseline values of serum magnesium and muscle strength of participants did not indicate any influences on response to magnesium supplementation. Our findings indicate that magnesium as magnesium oxide, 250 mg/day, for 8 weeks do not lead to a significant greater gain in muscle strength and function compared to placebo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Sirola J, Rikkonen T, Tuppurainen M, Jurvelin JS, Alhava E, Kroger H (2008) Grip strength may facilitate fracture prediction in perimenopausal women with normal BMD: a 15-year population-based study. Calcif Tissue Int 83:93–100

    Article  PubMed  CAS  Google Scholar 

  2. Cheung CL, Tan KC, Bow CH, Soong CS, Loong CH, Kung AW (2012) Low handgrip strength is a predictor of osteoporotic fractures: cross-sectional and prospective evidence from the Hong Kong Osteoporosis Study. Age 34:1239–1248

    Article  PubMed  Google Scholar 

  3. Rantanen T, Guralnik J, Foley D, Masaki K, Leveille S, Curb J, White L (1999) Midlife Hand Grip Strength as a Predictor of Old Age Disability. JAMA 281:558–560

    Article  PubMed  CAS  Google Scholar 

  4. Rantanen T, Harris T, Leveille S, Visser M, Foley D, Masaki K, Guralnik J (2000) Muscle Strength and Body Mass Index as Long-Term Predictors of Mortality in Initially Healthy Men. Journal of Gerontology: MEDICAL SCIENCES 55A:M168–M173

    Article  Google Scholar 

  5. Newman A, Kupelian V, Visser M, Simonsick E, Goodpaster B, Kritchevsky S, Tylavsky F, Rubin S, Harris T (2006) Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. Journal of Gerontology: MEDICAL SCIENCES 61A:72–77

    Article  Google Scholar 

  6. Jurca R, Lamonte MJ, Barlow CE, Kampert JB, Church TS, Blair SN (2005) Association of muscular strength with incidence of metabolic syndrome in men. Med Sci Sports Exerc 37:1849–1855

    Article  PubMed  Google Scholar 

  7. Atlantis E, Martin SA, Haren MT, Taylor AW, Wittert GA (2009) Inverse associations between muscle mass, strength, and the metabolic syndrome. Metabolism 58:1013–1022

    Article  PubMed  CAS  Google Scholar 

  8. Aoyama T, Asaka M, Ishijima T, Kawano H, Cao ZB, Sakamoto S, Tabata I, Higuchi M (2011) Association between muscular strength and metabolic risk in Japanese women, but not in men. J Physiol Anthropol 30:133–139

    Article  PubMed  Google Scholar 

  9. Lauretani F, Russo C, Bandinelli S, Bartali B, Cavazzini C, Iorio A, Corsi A, Rantanen T, Guralnik J, Ferrucci L (2003) Age-associated changes in skeletal muscles and their effect on mobility : an operational diagnosis of sarcopenia. J Appl Physiol 95:1851–1860

    PubMed  Google Scholar 

  10. Greenlund LJS, Nair KS (2003) Sarcopenia-consequences, mechanisms, and potential therapies. Mechanisms of Ageing and Development 124:287–299

    Article  PubMed  CAS  Google Scholar 

  11. Doherty T (2003) Invited Review : Aging and sarcopenia. J Appl Physiol 95:1717–1727

    PubMed  CAS  Google Scholar 

  12. Robinson S, Cooper C, Aihie Sayer A (2012) Nutrition and sarcopenia: a review of the evidence and implications for preventive strategies. J Aging Res 2012:510801

    PubMed  Google Scholar 

  13. Robinson SM, Jameson KA, Batelaan SF, Martin HJ, Syddall HE, Dennison EM, Cooper C, Sayer AA (2008) Diet and its relationship with grip strength in community-dwelling older men and women: the Hertfordshire cohort study. J Am Geriatr Soc 56:84–90

    Article  PubMed  Google Scholar 

  14. Nielsen FH, Lukaski HC (2006) Update on the relationship between magnesium and exercise. Magnes Res 19:180–189

    PubMed  CAS  Google Scholar 

  15. Nielsen FH (2010) Magnesium, inflammation, and obesity in chronic disease. Nutr Rev 68:333–340

    Article  PubMed  Google Scholar 

  16. Lukaski HC, Nielsen FH (2002) Dietary Magnesium Depletion Affects Metabolic Responses during Submaximal Exercise in Postmenopausal Women. J Nutr 132:930–935

    PubMed  CAS  Google Scholar 

  17. Dominguez L, Barbagallo M, Lauretani F, Bandinelli S, Bos A, Corsi A, Simonsick E, Ferrucci L (2006) Magnesium and muscle performance in older persons : the InCHIANTI study. Am J Clin Nutr 84:419–426

    PubMed  CAS  Google Scholar 

  18. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35:1381–1395

    Article  PubMed  Google Scholar 

  19. Budziareck MB, Pureza Duarte RR, Barbosa-Silva MC (2008) Reference values and determinants for handgrip strength in healthy subjects. Clin Nutr 27:357–362

    Article  PubMed  Google Scholar 

  20. Boadella JM, Kuijer PP, Sluiter JK, Frings-Dresen MH (2005) Effect of self-selected handgrip position on maximal handgrip strength. Arch Phys Med Rehabil 86:328–331

    Article  PubMed  Google Scholar 

  21. Macaluso A, Young A, Gibb KS, Rowe DA, De Vito G (2003) Cycling as a novel approach to resistance training increases muscle strength, power, and selected functional abilities in healthy older women. J Appl Physiol 95:2544–2553

    PubMed  Google Scholar 

  22. Rolland Y, Lauwers-Cances V, Pahor M, Fillaux J, Grandjean H, Vellas B (2004) Muscle strength in obese elderly women: effect of recreational physical activity in a cross-sectional study. Am J Clin Nutr 79:552–557

    PubMed  CAS  Google Scholar 

  23. Samson MM, Meeuwsen IB, Crowe A, Dessens JA, Duursma SA, Verhaar HJ (2000) Relationships between physical performance measures, age, height and body weight in healthy adults. Age Ageing 29:235–242

    Article  PubMed  CAS  Google Scholar 

  24. Wall JC, Bell C, Campbell S, Davis J (2000) The Timed Get-up-and-Go test revisited: measurement of the component tasks. J Rehabil Res Dev 37:109–113

    PubMed  CAS  Google Scholar 

  25. Luna-Heredia E, Martin-Pena G, Ruiz-Galiana J (2005) Handgrip dynamometry in healthy adults. Clin Nutr 24:250–258

    Article  PubMed  Google Scholar 

  26. Brilla LR, Haley TF (1992) Effect of magnesium supplementation on strength training in humans. J Am Coll Nutr 11:326–329

    PubMed  CAS  Google Scholar 

  27. Greenhaff PL, Bodin K, Soderlund K, Hultman E (1994) Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Physiol 266:E725–730

    PubMed  CAS  Google Scholar 

  28. Firoz M, Graber M (2001) Bioavailability of US commercial magnesium preparations. Magnes Res 14:257–262

    PubMed  CAS  Google Scholar 

  29. Walker AF, Marakis G, Christie S, Byng M (2003) Mg citrate found more bioavailable than other Mg preparations in a randomised, double-blind study. Magnes Res 16:183–191

    PubMed  CAS  Google Scholar 

  30. Guerrera MP, Volpe SL, Mao JJ (2009) Therapeutic uses of magnesium. Am Fam Physician 80:157–162

    PubMed  Google Scholar 

  31. Siener R, Jahnen A, Hesse A (2011) Bioavailability of magnesium from different pharmaceutical formulations. Urol Res 39:123–127

    Article  PubMed  CAS  Google Scholar 

  32. Dimai HP, Porta S, Wirnsberger G, Lindschinger M, Pamperl I, Dobnig H, Wilders-Truschnig M, Lau KH (1998) Daily oral magnesium supplementation suppresses bone turnover in young adult males. J Clin Endocrinol Metab 83:2742–2748

    Article  PubMed  CAS  Google Scholar 

  33. Rodriguez-Moran M, Guerrero-Romero F (2003) Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. Diabetes Care 26:1147–1152

    Article  PubMed  CAS  Google Scholar 

  34. Song Y, He K, Levitan EB, Manson JE, Liu S (2006) Effects of oral magnesium supplementation on glycaemic control in Type 2 diabetes: a meta-analysis of randomized double-blind controlled trials. Diabet Med 23:1050–1056

    Article  PubMed  CAS  Google Scholar 

  35. Lee S, Park HK, Son SP, Lee CW, Kim IJ, Kim HJ (2009) Effects of oral magnesium supplementation on insulin sensitivity and blood pressure in normo-magnesemic nondiabetic overweight Korean adults. Nutr Metab Cardiovasc Dis 19:781–788

    Article  PubMed  CAS  Google Scholar 

  36. Guerrero-Romero F, Tamez-Perez HE, Gonzalez-Gonzalez G, Salinas-Martinez AM, Montes-Villarreal J, Trevino-Ortiz JH, Rodriguez-Moran M (2004) Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial. Diabetes Metab 30:253–258

    Article  PubMed  CAS  Google Scholar 

  37. Hatzistavri LS, Sarafidis PA, Georgianos PI, Tziolas IM, Aroditis CP, Zebekakis PE, Pikilidou MI, Lasaridis AN (2009) Oral magnesium supplementation reduces ambulatory blood pressure in patients with mild hypertension. Am J Hypertens 22:1070–1075

    Article  PubMed  CAS  Google Scholar 

  38. Cesari M, Kritchevsky SB, Baumgartner RN, Atkinson HH, Penninx BW, Lenchik L, Palla SL, Ambrosius WT, Tracy RP, Pahor M (2005) Sarcopenia, obesity, and inflammation–results from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors study. Am J Clin Nutr 82:428–434

    PubMed  CAS  Google Scholar 

  39. Ruiz JR, Ortega FB, Warnberg J, Moreno LA, Carrero JJ, Gonzalez-Gross M, Marcos A, Gutierrez A, Sjostrom M (2008) Inflammatory proteins and muscle strength in adolescents: the Avena study. Arch Pediatr Adolesc Med 162:462–468

    Article  PubMed  Google Scholar 

  40. Maggio M, Ceda GP, Lauretani F, Cattabiani C, Avantaggiato E, Morganti S, Ablondi F, Bandinelli S, Dominguez LJ, Barbagallo M, Paolisso G, Semba RD, Ferrucci L (2011) Magnesium and anabolic hormones in older men. Int J Androl 34:e594–600

    Article  PubMed  CAS  Google Scholar 

  41. Cinar V, Polat Y, Baltaci AK, Mogulkoc R (2011) Effects of magnesium supplementation on testosterone levels of athletes and sedentary subjects at rest and after exhaustion. Biol Trace Elem Res 140:18–23

    Article  PubMed  CAS  Google Scholar 

  42. Moslehi N, Vafa M, Rahimi-Foroushani A, Golestan B (2012) Effects of oral magnesium supplementation on inflammatory markers in middle-aged overweight women. J Res Med Sci 17:607–614

    Google Scholar 

  43. Sugimoto J, Romani AM, Valentin-Torres AM, Luciano AA, Ramirez Kitchen CM, Funderburg N, Mesiano S, Bernstein HB (2012) Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism. J Immunol 188:6338–6346

    Article  PubMed  CAS  Google Scholar 

  44. Borst S (2004) Interventions for sarcopenia and muscle weakness in older people. Age and Ageing 33:548–555

    Article  PubMed  Google Scholar 

  45. Schaap LA, Pluijm SM, Deeg DJ, Harris TB, Kritchevsky SB, Newman AB, Colbert LH, Pahor M, Rubin SM, Tylavsky FA, Visser M (2009) Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol A Biol Sci Med Sci 64:1183–1189

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express our appreciation to the staff of Tehran University of Medical Sciences for their cooperation and participation in this study. This work was financially supported by Tehran University of Medical sciences

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Vafa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moslehi, N., Vafa, M., Sarrafzadeh, J. et al. Does Magnesium Supplementation Improve Body Composition and Muscle Strength in Middle-Aged Overweight Women? A Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Biol Trace Elem Res 153, 111–118 (2013). https://doi.org/10.1007/s12011-013-9672-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9672-1

Keywords

Navigation