Skip to main content
Log in

Effects of Strontium on Collagen Content and Expression of Related Genes in Rat Chondrocytes Cultured In Vitro

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Strontium stimulates cartilage matrix formation in vitro. However, the mechanisms governing these effects have not yet been extensively reported. In this study, chondrocytes were isolated from rat articular cartilage by enzymatic digestion and cultured for 24–72 h with 1–5 mM strontium. We investigated the effects of different concentrations of strontium on collagen content, type II collagen, insulin-like growth factor (IGF-1) and matrix metalloproteinase (MMP)-13 expression in rat cultured articular chondrocytes in vitro. The collagen content of the chondrocytes, determined as hydroxyproline, was measured by a colorimetry method. Type II collagen, IGF-1, and MMP-13 mRNA abundance and protein expression levels were determined by real-time polymerase chain reaction (real-time PCR) and western blot, respectively. The results showed that collagen content from the chondrocytes extracellular matrix increased with increasing strontium concentration. Moreover, 3 and 5 mM strontium strongly stimulated protein expression and mRNA levels of type II collagen and IGF-1. Conversely, MMP-13 expression in chondrocytes decreased dose-dependently with increasing strontium concentration. These results should provide insight into the ability of strontium to promote chondrocyte extracellular matrix synthesis. Strontium could promote collagen synthesis and suppress collagen degradation via the repression of MMP-13 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goldring MB (2000) The role of the chondrocyte in osteoarthritis. Arthritis Rheum 43:1916–1926

    Article  PubMed  CAS  Google Scholar 

  2. Aigner T, Stöve J (2003) Collagens-major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev 55:1569–1593

    Article  PubMed  CAS  Google Scholar 

  3. Adachi N, Sato K, Usas A et al (2002) Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. J Rheumatol 29:1920–1930

    PubMed  CAS  Google Scholar 

  4. Angele P, Schumann D, Angele M et al (2004) Cyclic, mechanical compression enhances chondrogenesis of mesenchymal progenitor cells in tissue engineering scaffolds. Biorheology 41:335–348

    PubMed  CAS  Google Scholar 

  5. Poole A, Kobayashi M, Yasuda T et al (2002) Type II collagen degradation and its regulation in articular cartilage in osteoarthritis. Ann Rheum Dis 61:ii78–ii81

    PubMed  CAS  Google Scholar 

  6. Gangl M, Serteyn D, Lejeune JP et al (2007) A type II-collagen derived peptide and its nitrated form as new markers of inflammation and cartilage degradation in equine osteochondral lesions. Res Vet Sci 82:68–75

    Article  PubMed  CAS  Google Scholar 

  7. Lark M, Bayne E, Flanagan J et al (1997) Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest 100:93

    Article  PubMed  CAS  Google Scholar 

  8. Hadjidakis DJ, Androulakis II (2007) Bone remodeling. Ann NY Acad Sci 1092:385–396

    Article  Google Scholar 

  9. Bonewald L, Dallas S (2004) Role of active and latent transforming growth factor β in bone formation. J Cell Biochem 55:350–357

    Article  Google Scholar 

  10. Fukumoto T, Sperling J, Sanyal A et al (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-β1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr Cartil 11:55–64

    Article  PubMed  CAS  Google Scholar 

  11. Stickens D, Behonick DJ, Ortega N et al (2004) Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131:5883–5895

    Article  PubMed  CAS  Google Scholar 

  12. Reboul P, Pelletier JP, Tardif G et al (1996) The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis. J Clin Invest 97:2011

    Article  PubMed  CAS  Google Scholar 

  13. Billinghurst RC, Dahlberg L, Ionescu M et al (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 99:1534

    Article  PubMed  CAS  Google Scholar 

  14. Wang X, Manner PA, Horner A et al (2004) Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthr Cartil 12:963–973

    Article  PubMed  Google Scholar 

  15. Li Z, Lam W, Yang C et al (2007) Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials 28:1452–1460

    Article  PubMed  CAS  Google Scholar 

  16. Marie PJ, Hott M, Modrowski D et al (2005) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen–deficient rats. J Bone Miner Res 20:1065–1074

    Article  Google Scholar 

  17. Henrotin Y, Labasse A, Zheng S et al (2001) Strontium ranelate increases cartilage matrix formation. J Bone Miner Res 16:299–308

    Article  PubMed  CAS  Google Scholar 

  18. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45–e45

    Article  PubMed  CAS  Google Scholar 

  19. Yuan X, Wang J, Zhu X et al (2011) Effect of Copper on Levels of Collagen and Alkaline Phosphatase Activity from Chondrocytes in Newborn Piglets In Vitro. Biol Trace Elem Res 1–9

  20. Wang J, Zhu X, Li X et al (2011) Effects of copper on proliferation and autocrine secretion of insulin-like growth factor-1 (IGF-1) and igf-binding protein-3 (IGFBP-3) in chondrocytes from newborn pigs in vitro. Biol Trace Elem Res 144:588–596

    Article  PubMed  CAS  Google Scholar 

  21. Henrotin Y, Addison S, Kraus V et al (2007) Type II collagen markers in osteoarthritis: what do they indicate? Curr Opin Rheumatol 19:444

    Article  PubMed  CAS  Google Scholar 

  22. Reginster JY, Deroisy R, Jupsin I (2003) Strontium ranelate: a new paradigm in the treatment of osteoporosis. Drugs Today 39:89–101

    Article  PubMed  CAS  Google Scholar 

  23. Henrotin YE, Deberg MA, Crielaard JM et al (2006) Avocado/soybean unsaponifiables prevent the inhibitory effect of osteoarthritic subchondral osteoblasts on aggrecan and type II collagen synthesis by chondrocytes. J Rheumatol 33:1668–1678

    PubMed  Google Scholar 

  24. Loeser RF, Pacione CA, Chubinskaya S (2003) The combination of insulin–like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes. Arthritis Rheum 48:2188–2196

    Article  PubMed  CAS  Google Scholar 

  25. Martin J, Buckwalter J (2000) The role of chondrocyte-matrix interactions in maintaining and repairing articular cartilage. Biorheology 37:129–140

    PubMed  CAS  Google Scholar 

  26. Gulhan I, Bilgili S, Gunaydin R et al (2008) The effect of strontium ranelate on serum insulin like growth factor-1 and leptin levels in osteoporotic post-menopausal women: a prospective study. Arch Gynecol Obstet 278:437–441

    Article  PubMed  CAS  Google Scholar 

  27. Li Z, Lu WW, Chiu PKY et al (2009) Strontium–calcium coadministration stimulates bone matrix osteogenic factor expression and new bone formation in a large animal model. J Orthop Res 27:758–762

    Article  PubMed  CAS  Google Scholar 

  28. Knäuper V, López-Otin C, Smith B et al (1996) Biochemical characterization of human collagenase-3. J Biol Chem 271:1544–1550

    Article  PubMed  Google Scholar 

  29. Knäuper V, Will H, López-Otin C et al (1996) Cellular mechanisms for human procollagenase-3 (MMP-13) activation. J Biol Chem 271:17124–17131

    Article  PubMed  Google Scholar 

  30. Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3:107–113

    Article  PubMed  CAS  Google Scholar 

  31. Wu CW, Tchetina EV, Mwale F et al (2002) Proteolysis involving matrix metalloproteinase 13 (collagenase-3) is required for chondrocyte differentiation that is associated with matrix mineralization. J Bone Miner Res 17:639–651

    Article  PubMed  CAS  Google Scholar 

  32. Mitchell PG, Magna HA, Reeves LM et al (1996) Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest 97:761

    Article  PubMed  CAS  Google Scholar 

  33. Lee HP, Choi YJ, Cho KA et al (2012) Effect of Spa spring water on cytokine expression in human keratinocyte HaCaT cells and on differentiation of CD4+ T cells. Ann Dermatol 24:324–336

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in University (NCET-11-0199), the Joint Funds of the NSFC-Yunnan province (U0836601), the National Key Technology R&D Program (Grant No. 2012BAD12B03), the National Natural Science Foundation of China (Grant Nos. 30600441, 30972212, 30871897 and 31072178) and the Science Fund for Distinguished Young Scholars of Jilin University (Grant No. 201100009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Wang or Guowen Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zhu, X., Liu, L. et al. Effects of Strontium on Collagen Content and Expression of Related Genes in Rat Chondrocytes Cultured In Vitro . Biol Trace Elem Res 153, 212–219 (2013). https://doi.org/10.1007/s12011-013-9640-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9640-9

Keywords

Navigation