Skip to main content

Advertisement

Log in

Bioavailability of Stabilised Ferrous Gluconate with Glycine in Fresh Cheese Matrix: a Novel Iron Compound for Food Fortification

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iron fortification of foods continues to be one of the preferred ways of improving the iron status of the population. Dairy product is a common product in the diet; therefore, it is a plausible vehicle for iron fortification. This study aims to investigate the bioavailability of ferrous gluconate stabilised with glycine (FGSG) in a fresh cheese fortified with zinc. The iron bioavailability of fresh cheese fortified with either FGSG and with or without zinc and FGSG in aqueous solution and a water solution of ferrous ascorbate (reference dose) was studied using double radio iron (55Fe and 59Fe) erythrocyte incorporation in 15 male subjects. All subjects presented with normal values for iron status parameters. The geometric mean of iron bioavailability for the water solution of FGSG was 38.2 %, adjusted to 40 % from reference doses (N.S.). Iron bioavailability in fresh cheese fortified with Ca and Zn was 15.4 % and was 23.1 % without Zn, adjusted to 40 % from reference doses (N.S.). The results of the present study show that the novel iron compound ferrous gluconate stabilised with glycine in a fresh cheese matrix is a good source of iron and can be used in iron fortification programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CDC (1998) Recommendations to prevent and control iron deficiency in the United States. Centers for Disease Control and Prevention. MMWR Recomm Rep 47: 1–29

    Google Scholar 

  2. Boccio J, Salgueiro J, Lysionek A et al (2003) Current knowledge of iron metabolism. Biol Trace Elem Res 92:189–212

    Article  PubMed  CAS  Google Scholar 

  3. Brune M, Rossander-Hulten L, Hallberg L et al (1992) Iron absorption from bread in humans: inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. J Nutr 122:442–449

    PubMed  CAS  Google Scholar 

  4. Boccio J, Salgueiro J, Zubillaga M et al (2002) Zinc and iron interactions evaluated between different mineral sources in different nutritional matrixes. Food Nutr Bull 23(suppl 3):s195–s198

    Google Scholar 

  5. Stekel A, Olivares M, Pizarro F et al (1986) Absorption of fortification iron from milk formulas in infants. Am J Clin Nutr 43:917–922

    PubMed  CAS  Google Scholar 

  6. Fischer DS, Price DC (1964) A simple serum iron method using the new sensitive chromogen tripyridyl-s-triazine. Clin Chem 10:21–31

    Article  PubMed  CAS  Google Scholar 

  7. International Anemia Consultative Group (1985) Measurement of iron status: a report of the international anemia consultative group. The Nutrition Foundation, Washington

    Google Scholar 

  8. Eakins I, Brown D (1966) An improved method for the simultaneous determinations of 55-iron and 59-iron in blood by liquid scintillation counting. Int J Appl Radiat Isot 17:391–397

    Article  PubMed  CAS  Google Scholar 

  9. Nadler SB, Hidalgo IV, Block T (1962) Prediction of blood volume in normal human adults. Surgeon 51:224–232

    Google Scholar 

  10. Bothwell TH, Charlton RW, Cook JD et al (1979) Iron metabolism in man. Blackwell, Oxford

    Google Scholar 

  11. Lysionek A, Zubillaga M, Salgueiro J et al (2003) Stabilized ferrous gluconate as iron source for food fortification. Bioavailability and toxicity studies in rats. Biol Trace Elem Res 94:73–77

    Article  PubMed  CAS  Google Scholar 

  12. Janjetic M, Barrado A, Torti H et al (2006) Iron bioavailability from fortified petit suisse cheese determined by the prophylactic–preventive method. Biol Trace Elem Res 109:195–200

    Article  PubMed  CAS  Google Scholar 

  13. Bezwoda W, Torrance J, Bothwell T et al (1985) Iron absorption from red and white wines. Scand J Haematol 34:121–127

    Article  PubMed  CAS  Google Scholar 

  14. Charlton R, Bothwell T (1993) Iron absorption. Annu Rev Med 34:55–68

    Article  Google Scholar 

  15. Bothwell T, Baynes R, MacFarlane B et al (1989) Nutritional iron requirements and food iron absorption. J Intern Med 226:357–365

    Article  PubMed  CAS  Google Scholar 

  16. Schumann K, Elsenhans B, Ehtechami C et al (1990) Rat intestinal iron transfer capacity and the longitudinal distribution of its adaptation to iron deficiency. Digestion 46:35–45

    Article  PubMed  CAS  Google Scholar 

  17. Siegenberg D, Baynes R, Bothwell T et al (1991) Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. Am J Clin Nutr 53:537–541

    PubMed  CAS  Google Scholar 

  18. Olivares M, Hertrampf E, Pizarro F (1993) Effect of iron stores on heme iron absorption. Nutr Res 13:633–638

    Article  Google Scholar 

  19. Pizarro F, Olivares M, Hertrampf E et al (1994) Factores que modifican el estado de nutrición de hierro: contenido de taninos en infusiones de hierbas. Arch Latinoam Nutr 44:277–280

    PubMed  CAS  Google Scholar 

  20. Minotti P, Buchonski S, Miller D (1993) Effects of calcium supplementation, calcium source and lactose on iron absorption in the rat. Nutr Res 13:1173–1181

    Article  CAS  Google Scholar 

  21. Reddy M, Hurrell R, Cook J (2000) Estimation of nonheme-iron bioavailability from meal composition. Am J Clin Nutr 71:937–943

    PubMed  CAS  Google Scholar 

  22. Cook J, Dassenko S, Whittaker P (1991) Calcium supplementation: effect on iron absorption. Am J Clin Nutr 53:106–111

    PubMed  CAS  Google Scholar 

  23. Hallberg L, Rossander-Hulthen L, Brune M et al (1992) Calcium and iron absorption: mechanism of action and nutritional importance. Eur J Clin Nutr 46:317–327

    PubMed  CAS  Google Scholar 

  24. Gleerup A, Rossander-Hulten L, Hallberg L (1993) Duration of the inhibitory effect of calcium on non-haem iron absorption in man. Eur J Clin Nutr 47:875–879

    PubMed  CAS  Google Scholar 

  25. Reddy M, Cook J (1997) Effect of calcium intake on nonheme-iron absorption from a complete diet. Am J Clin Nutr 65:1820–1825

    PubMed  CAS  Google Scholar 

  26. Hallberg L (1998) Does calcium interfere with iron absorption? Am J Clin Nutr 68:3–4

    PubMed  CAS  Google Scholar 

  27. Salgueiro MJ, Zubillaga M, Lysionek A et al (2002) Strategies to combat zinc and iron deficiency. Nutr Rev 60:52–58

    Article  PubMed  Google Scholar 

  28. Magnusson G, Bjorn-Rasmussen E, Hallberg L et al (1981) Iron absorption in relation to iron status. Model proposed to express results to food iron absorption measurements. Scand J Hematol 27:201–208

    Article  CAS  Google Scholar 

  29. Uicich R, Pizarro F, Almeida C et al (1999) Bioavailabilioty of microencapsulated ferrous sulfate in fluid cow’s milk. Studies in human beings. Nutr Res 19:893–897

    Article  CAS  Google Scholar 

  30. Allen L, Benoist B, Dary O et al (2006) Guidelines on food fortification with micronutrients. WHO/FAO, Geneva

    Google Scholar 

Download references

Acknowledgments

We would like to thank Stephane Doat and Angélica Letelier for his excellent technical assistance. This study was supported by funding from Danone Research, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Pizarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pizarro, F., Boccio, J., Salgueiro, M. et al. Bioavailability of Stabilised Ferrous Gluconate with Glycine in Fresh Cheese Matrix: a Novel Iron Compound for Food Fortification. Biol Trace Elem Res 151, 441–445 (2013). https://doi.org/10.1007/s12011-012-9574-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9574-7

Keywords

Navigation