Skip to main content
Log in

Feeding of Selenium Alone or in Combination with Glucoraphanin Differentially Affects Intestinal and Hepatic Antioxidant and Phase II Enzymes in Growing Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The anti-carcinogenic effects of sulforaphane (SFN) are based on the up-regulation of antioxidant enzymes (AE) and phase II enzymes (PIIE) through the transcription factor Nrf2. Current knowledge on the roles of the SFN precursor glucoraphanin (GRA) on these processes is limited. Anti-carcinogenic effects of Se depending on glutathione peroxidase (GPx) activity have also been reported. We studied effects and possible synergisms of Se and GRA on the expression and activity of a broad spectrum of AE and PIIE in jejunum, colon and the liver of rats fed diets differing in Se and GRA concentration. In all organs, GPx1 mRNA expression was 70 % to 90 % lower in Se deficiency than in Se sufficiency. GPx2 expression increased in jejunum and liver under Se deficiency and decreased in the colon. Se deficiency increased most colonic AE and PIIE compared to Se adequacy. Adequate and in particular supranutritive Se combined with GRA increased colonic AE and PIIE expression up to 3.72-fold. In the liver Se deficiency raised the expression of AE and PIIE up to 4.49-fold. GRA attenuated liver AE and PIIE response in Se deficiency. Expression- and correlation analyses revealed that Keap1 mRNA better reflects AE and PIIE gene expression than Nrf2 mRNA. We conclude that: (1) GPx1 sensitively indicates Se deficiency; (2) the influence of Se and Nrf2/Keap1 on GPx2 expression depends on the organ; (3) GRA combined with supranutritive Se may effectively protect against inflammation and colon cancer; (4) future investigations on AE and PIIE expression should consider the role of Keap1 to a higher extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AE:

Antioxidant enzymes

ARE:

Antioxidant response element

COX:

Cyclooxygenase

EPHX1:

Microsomal epoxide hydrolase

GPx:

Glutathione peroxidase

GRA:

Glucoraphanin

GST:

Glutathione S-transferase

HO1:

Heme oxygenase 1

iNOS:

Inducible nitric oxide synthase

Keap1:

Kelch-like ECH-associated protein 1

LPS:

Lipopolysaccharide

NQO1:

NAD(P)H:quinine oxidoreductase 1

Nrf2:

Nuclear factor erythroid 2-related factor 2

PIIE:

Phase II enzymes

Se:

Selenium

SFN:

Sulforaphane

TNFα:

Tumor necrosis factor-alpha

UGT:

UDP-glucuronosyltransferase

VCAM1:

Vascular cell adhesion molecule 1

References

  1. Aleksunes LM, Manautou JE (2007) Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease. Toxicol Pathol 35:459–473

    Article  PubMed  CAS  Google Scholar 

  2. Jancova P, Anzenbacher P, Anzenbacherova E (2010) Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 154:103–116

    Article  PubMed  CAS  Google Scholar 

  3. Pool-Zobel B, Veeriah S, Böhmer FD (2005) Modulation of xenobiotic metabolising enzymes by anticarcinogens — focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis. Mutat Res 591:74–92

    Article  PubMed  CAS  Google Scholar 

  4. Dinkova-Kostova AT, Talalay P (2008) Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res 52:S128–S138

    PubMed  Google Scholar 

  5. Raza H (2011) Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease. FEBS J 278:4243–4251

    Article  PubMed  CAS  Google Scholar 

  6. Oakley AJ (2005) Glutathione transferases: new functions. Curr Opin Struct Biol 15:716–723

    Article  PubMed  CAS  Google Scholar 

  7. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  PubMed  CAS  Google Scholar 

  8. Copple IM, Goldring CE, Kitteringham NR, Park BK (2010) The keap1-nrf2 cellular defense pathway: mechanisms of regulation and role in protection against drug-induced toxicity. Handb Exp Pharmacol 196:233–266

    Article  PubMed  CAS  Google Scholar 

  9. Li W, Kong AN (2009) Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog 48:91–104

    Article  PubMed  CAS  Google Scholar 

  10. Banning A, Deubel S, Kluth D, Zhou Z, Brigelius-Flohé R (2005) The GI-GPx gene is a target for Nrf2. Mol Cell Biol 25:4914–4923

    Article  PubMed  CAS  Google Scholar 

  11. Guerrero-Beltrán CE, Calderón-Oliver M, Pedraza-Chaverri J, Chirino YI (2012) Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol 64:503–508

    Article  PubMed  Google Scholar 

  12. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  PubMed  CAS  Google Scholar 

  13. Lai RH, Miller MJ, Jeffery E (2010) Glucoraphanin hydrolysis by microbiota in the rat cecum results in sulforaphane absorption. Food Funct 1:161–166

    Article  PubMed  CAS  Google Scholar 

  14. Fahey JW, Wehage SL, Holtzclaw WD, Kensler TW, Egner PA, Shapiro TA, Talalay P (2012) Protection of humans by plant glucosinolates: efficiency of conversion of glucosinolates to isothiocyanates by the gastrointestinal microflora. Cancer Prev Res (Phila) 5:603–611

    Article  CAS  Google Scholar 

  15. Abdull Razis AF, Bagatta M, De Nicola GR, Iori R, Ioannides C (2010) Intact glucosinolates modulate hepatic cytochrome P450 and phase II conjugation activities and may contribute directly to the chemopreventive activity of cruciferous vegetables. Toxicology 277:74–85

    Article  PubMed  CAS  Google Scholar 

  16. Abdull Razis AF, Bagatta M, De Nicola GR, Iori R, Ioannides C (2011) Up-regulation of cytochrome P450 and phase II enzyme systems in rat precision-cut rat lung slices by the intact glucosinolates, glucoraphanin and glucoerucin. Lung Cancer 71:298–305

    Article  PubMed  Google Scholar 

  17. Müller M, Banning A, Brigelius-Flohé R, Kipp A (2010) Nrf2 target genes are induced under marginal selenium-deficiency. Genes Nutr 5:297–307

    Article  PubMed  Google Scholar 

  18. Bosse AC, Pallauf J, Hommel B, Sturm M, Fischer S, Wolf NM, Mueller AS (2010) Impact of selenite and selenate on differentially expressed genes in rat liver examined by microarray analysis. Biosci Rep 30:293–306

    Article  PubMed  CAS  Google Scholar 

  19. McLeod R, Ellis EM, Arthur JR, Neal GE, Judah DJ, Manson MM, Hayes JD (1997) Protection conferred by selenium deficiency against aflatoxin B1 in the rat is associated with the hepatic expression of an aldo-keto reductase and a glutathione S-transferase subunit that metabolize the mycotoxin. Cancer Res 57:4257–4266

    PubMed  CAS  Google Scholar 

  20. Lawrence RA, Parkhill LK, Burk RF (1978) Hepatic cytosolic non selenium-dependent glutathione peroxidase activity: its nature and the effect of selenium deficiency. J Nutr 108:981–987

    PubMed  CAS  Google Scholar 

  21. Burk RF, Hill KE, Nakayama A, Mostert V, Levander XA, Motley AK, Johnson DA, Johnson JA, Freeman ML, Austin LM (2008) Selenium deficiency activates mouse liver Nrf2-ARE but vitamin E deficiency does not. Free Radic Biol Med 44:1617–1623

    Article  PubMed  CAS  Google Scholar 

  22. Zhang J, Wang H, Peng D, Taylor EW (2008) Further insight into the impact of sodium selenite on selenoenzymes: high-dose selenite enhances hepatic thioredoxin reductase 1 activity as a consequence of liver injury. Toxicol Lett 176:223–229

    Article  PubMed  CAS  Google Scholar 

  23. ‘t Hoen PA, Rooseboom M, Bijsterbosch MK, van Berkel TJ, Vermeulen NP, Commandeur JN (2002) Induction of glutathione-S-transferase mRNA levels by chemopreventive selenocysteine Se-conjugates. Biochem Pharmacol 63:1843–1849

    Article  PubMed  Google Scholar 

  24. Xiao H, Parkin KL (2006) Induction of phase II enzyme activity by various selenium compounds. Nutr Cancer 55:210–223

    Article  PubMed  CAS  Google Scholar 

  25. Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW (2010) When NRF2 talks, who’s listening? Antioxid Redox Signal 13:1649–1663

    Article  PubMed  CAS  Google Scholar 

  26. Kim J, Cha YN, Surh YJ (2010) A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res 690:12–23

    Article  PubMed  CAS  Google Scholar 

  27. Smith WL, Langenbach R (2001) Why there are two cyclooxygenase isozymes. J Clin Invest 107:1491–1495

    Article  PubMed  CAS  Google Scholar 

  28. Lin W, Wu RT, Wu T, Khor TO, Wang H, Kong AN (2008) Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem Pharmacol 76:967–973

    Article  PubMed  CAS  Google Scholar 

  29. Krehl S, Loewinger M, Florian S, Kipp AP, Banning A, Wessjohann LA, Brauer MN, Iori R, Esworthy RS, Chu FF, Brigelius-Flohé R (2012) Glutathione peroxidase-2 and selenium decreased inflammation and tumors in a mouse model of inflammation-associated carcinogenesis whereas sulforaphane effects differed with selenium supply. Carcinogenesis 33:620–628

    Article  PubMed  CAS  Google Scholar 

  30. Wolf NM, Mueller K, Hirche F, Most E, Pallauf J, Mueller AS (2010) Study of molecular targets influencing homocysteine and cholesterol metabolism in growing rats by manipulation of dietary selenium and methionine concentrations. Br J Nutr 104:520–532

    Article  PubMed  CAS  Google Scholar 

  31. Ricci G, Caccuri AM, Lo Bello M, Pastore A, Piemonte F, Federici G (1994) Colorimetric and fluorometric assays of glutathione transferase based on 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Anal Biochem 218:463–4654

    Article  PubMed  CAS  Google Scholar 

  32. Habig W, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    Article  PubMed  CAS  Google Scholar 

  33. Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  PubMed  CAS  Google Scholar 

  34. Blum NM, Mueller K, Hirche F, Lippmann D, Most E, Pallauf J, Linn T, Mueller AS (2011) Glucoraphanin does not reduce plasma homocysteine in rats with sufficient Se supply via the induction of liver ARE-regulated glutathione biosynthesis enzymes. Food Funct 2:654–664

    Article  PubMed  CAS  Google Scholar 

  35. Prochaska HJ, Santamaria AB (1988) Direct measurement of NAD(P)H:quinone reductase from cells cultured in microtiter wells: a screening assay for anticarcinogenic enzyme inducers. Anal Biochem 169:328–336

    Article  PubMed  CAS  Google Scholar 

  36. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  37. Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat Protoc 1:581–585

    Article  PubMed  CAS  Google Scholar 

  38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  39. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  40. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  41. Sunde RA (2010) Molecular biomarker panels for assessment of selenium status in rats. Exp Biol Med (Maywood) 235:1046–1052

    Article  CAS  Google Scholar 

  42. Wingler K, Böcher M, Flohé L, Kollmus H, Brigelius-Flohé R (1999) mRNA stability and selenocysteine insertion sequence efficiency rank gastrointestinal glutathione peroxidase high in the hierarchy of selenoproteins. Eur J Biochem 259:149–157

    Article  PubMed  CAS  Google Scholar 

  43. Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127

    Article  PubMed  CAS  Google Scholar 

  44. Khor TO, Huang MT, Kwon KH, Chan JY, Reddy BS, Kong AN (2006) Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res 66:11580–11584

    Article  PubMed  CAS  Google Scholar 

  45. Saw CL, Kong AN (2011) Nuclear factor-erythroid 2-related factor 2 as a chemopreventive target in colorectal cancer. Expert Opin Ther Targets 15:281–295

    Article  PubMed  CAS  Google Scholar 

  46. Müller C, Wingler K, Brigelius-Flohé R (2003) 3′UTRs of glutathione peroxidases differentially affect selenium-dependent mRNA stability and selenocysteine incorporation efficiency. Biol Chem 384:11–18

    Article  PubMed  Google Scholar 

  47. Nishimura J, Dewa Y, Muguruma M, Kuroiwa Y, Yasuno H, Shima T, Jin M, Takahashi M, Umemura T, Mitsumori K (2007) Effect of fenofibrate on oxidative DNA damage and on gene expression related to cell proliferation and apoptosis in rats. Toxicol Sci 97:44–54

    Article  PubMed  CAS  Google Scholar 

  48. Meinl W, Sczesny S, Brigelius-Flohé R, Blaut M, Glatt H (2009) Impact of gut microbiota on intestinal and hepatic levels of phase 2 xenobiotic-metabolizing enzymes in the rat. Drug Metab Dispos 37:1179–1186

    Article  PubMed  CAS  Google Scholar 

  49. Brigelius-Flohé R, Wingler K, Müller C (2002) Estimation of individual types of glutathione peroxidases. Methods Enzymol 347:101–112

    Article  PubMed  Google Scholar 

  50. Thomson RE, Bigley AL, Foster JR, Jowsey IR, Elcombe CR, Orton TC, Hayes JD (2004) Tissue-specific expression and subcellular distribution of murine glutathione S-transferase class kappa. J Histochem Cytochem 52:653–662

    Article  PubMed  CAS  Google Scholar 

  51. Morel F, Aninat C (2011) The glutathione transferase kappa family. Drug Metab Rev 43:281–291

    Article  PubMed  CAS  Google Scholar 

  52. Raines AM, Sunde RA (2011) Selenium toxicity but not deficient or super-nutritional selenium status vastly alters the transcriptome in rodents. BMC Genomics 12:26

    Article  PubMed  CAS  Google Scholar 

  53. Knight TR, Choudhuri S, Klaassen CD (2008) Induction of hepatic glutathione S-transferases in male mice by prototypes of various classes of microsomal enzyme inducers. Toxicol Sci 106:329–338

    Article  PubMed  CAS  Google Scholar 

  54. Higgins LG, Hayes JD (2011) Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev 43:92–137

    Article  PubMed  CAS  Google Scholar 

  55. van Bladeren PJ (2000) Glutathione conjugation as a bioactivation reaction. Chem Biol Interact 129:61–76

    Article  PubMed  Google Scholar 

  56. Tew KD, Townsend DM (2011) Regulatory functions of glutathione S-transferase P1-1 unrelated to detoxification. Drug Metab Rev 43:179–193

    Article  PubMed  CAS  Google Scholar 

  57. Wilcox RA (2010) Cancer-associated myeloproliferation: old association, new therapeutic target. Mayo Clin Proc 85:656–663

    Article  PubMed  Google Scholar 

  58. Treptow-van Lishaut S, Rechkemmer G, Rowland I, Dolara P, Pool-Zobel BL (1999) The carbohydrate crystalean and colonic microflora modulate expression of glutathione S-transferase subunits in colon of rats. Eur J Nutr 38:76–83

    Article  PubMed  CAS  Google Scholar 

  59. Chung FL, Conaway CC, Rao CV, Reddy BS (2000) Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis 21:2287–2291

    Article  PubMed  CAS  Google Scholar 

  60. Brigelius-Flohé R, Banning A (2006) Part of the series: from dietary antioxidants to regulators in cellular signaling and gene regulation. Sulforaphane and selenium, partners in adaptive response and prevention of cancer. Free Radic Res 40:775–787

    Article  PubMed  Google Scholar 

  61. Combs GF Jr (2005) Current evidence and research needs to support a health claim for selenium and cancer prevention. J Nutr 135:343–347

    PubMed  CAS  Google Scholar 

  62. Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64:527–542

    Article  PubMed  CAS  Google Scholar 

  63. Duffield-Lillico AJ, Reid ME, Turnbull BW, Combs GF Jr, Slate EH, Fischbach LA, Marshall JR, Clark LC (2002) Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: a summary report of the Nutritional Prevention of Cancer Trial. Cancer Epidemiol Biomarkers Prev 11:630–639

    PubMed  CAS  Google Scholar 

  64. Zhu N, Soendergaard M, Jeffery EH, Lai RH (2010) The impact of loss of myrosinase on the bioactivity of broccoli products in F344 rats. J Agric Food Chem 58:1558–1563

    Article  PubMed  CAS  Google Scholar 

  65. Lai RH, Keck AS, Wallig MA, West LG, Jeffery EH (2008) Evaluation of the safety and bioactivity of purified and semi-purified glucoraphanin. Food Chem Toxicol 46:195–202

    Article  PubMed  CAS  Google Scholar 

  66. Wang X, Tomso DJ, Chorley BN, Cho HY, Cheung VG, Kleeberger SR, Bell DA (2007) Identification of polymorphic antioxidant response elements in the human genome. Hum Mol Genet 16:1188–1200

    Article  PubMed  CAS  Google Scholar 

  67. Takaya K, Suzuki T, Motohashi H, Onodera K, Satomi S, Kensler TW, Yamamoto M (2012) Validation of the multiple sensor mechanism of the Keap1–Nrf2 system. Free Radic Biol Med 2012 Jun 23. [Epub ahead of print]

  68. Hayes JD, Kelleher MO, Eggleston IM (2008) The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur J Nutr 47(Suppl 2):73–88

    Article  PubMed  CAS  Google Scholar 

  69. Chen XL, Dodd G, Kunsch C (2009) Sulforaphane inhibits TNF-alpha-induced activation of p38 MAP kinase and VCAM-1 and MCP-1 expression in endothelial cells. Inflamm Res 58:513–521

    Article  PubMed  CAS  Google Scholar 

  70. Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhäuser C (2001) Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 276:32008–32015

    Article  PubMed  CAS  Google Scholar 

  71. Vunta H, Belda BJ, Arner RJ, Channa Reddy C, Vanden Heuvel JP, Sandeep Prabhu K (2008) Selenium attenuates pro-inflammatory gene expression in macrophages. Mol Nutr Food Res 52:1316–1323

    Article  PubMed  CAS  Google Scholar 

  72. Zamamiri-Davis F, Lu Y, Thompson JT, Prabhu KS, Reddy PV, Sordillo LM, Reddy CC (2002) Nuclear factor-kappaB mediates over-expression of cyclooxygenase-2 during activation of RAW 264.7 macrophages in selenium deficiency. Free Radic Biol Med 32:890–897

    Article  PubMed  CAS  Google Scholar 

  73. Banning A, Kipp A, Schmitmeier S, Löwinger M, Florian S, Krehl S, Thalmann S, Thierbach R, Steinberg P, Brigelius-Flohé R (2008) Glutathione peroxidase 2 inhibits cyclooxygenase-2-mediated migration and invasion of HT-29 adenocarcinoma cells but supports their growth as tumors in nude mice. Cancer Res 68:9746–9753

    Article  PubMed  CAS  Google Scholar 

  74. Kulmacz RJ (2005) Regulation of cyclooxygenase catalysis by hydroperoxides. Biochem Biophys Res Commun 338:25–33

    Article  PubMed  CAS  Google Scholar 

  75. Heirman I, Ginneberge D, Brigelius-Flohé R, Hendrickx N, Agostinis P, Brouckaert P, Rottiers P, Grooten J (2006) Blocking tumor cell eicosanoid synthesis by GPx 4 impedes tumor growth and malignancy. Free Radic Biol Med 40:285–294

    Article  PubMed  CAS  Google Scholar 

  76. Banning A, Florian S, Deubel S, Thalmann S, Müller-Schmehl K, Jacobasch G, Brigelius-Flohé R (2008) GPx2 counteracts PGE2 production by dampening COX-2 and mPGES-1 expression in human colon cancer cells. Antioxid Redox Signal 10:1491–1500

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank the Danone Foundation For Health, Haar, Germany for supporting the present experiment by a grant dedicated to study the effects of GRA supplementation on metabolic processes (Project number 2009/6). We also thank Mrs. Kumari Hiller (Jarrow Deutschland GmbH, Berlin, Germany) and Mr. Jarrow L. Rogovin (Jarrow Formulas Los Angeles, CA, USA) for providing us with the broccoli extract. We thank our students Stefanie Weber, René Priwratzky and Anna Sachno for help with the analyses within the scope of their theses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas S. Mueller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, N.M., Mueller, K., Lippmann, D. et al. Feeding of Selenium Alone or in Combination with Glucoraphanin Differentially Affects Intestinal and Hepatic Antioxidant and Phase II Enzymes in Growing Rats. Biol Trace Elem Res 151, 384–399 (2013). https://doi.org/10.1007/s12011-012-9567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9567-6

Keywords

Navigation