Skip to main content
Log in

Comparison of Effects of Vanadium Absorbed by Coprinus comatus with Those of Inorganic Vanadium on Bone in Streptozotocin-Diabetic Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to compare the effect of vanadium absorbed by Coprinus comatus (VACC) with inorganic vanadium (vanadium nitrate, IV) in preventing diabetes-related osteopenia in streptozotocin-diabetic rats. Sixty Wistar female rats used were divided into four groups: (1) normal rats (control), (2) diabetic rats, (3) diabetic rats treated with VACC, and (4) diabetic rats treated with vanadium nitrate. A standardized type 1-like diabetes model was induced by injection of streptozotocin. After the rats were treated orally with VACC and IV respectively, plasma glucose, body weights, micro-CT, biomechanical testing, and histomorphometry were examined. In addition, bone samples were obtained to evaluate the content of mineral substances in bones. Treatments were performed over a 12-week period. Both VACC and IV have a positive effect on plasma glucose and body weights of STZ-induced diabetic rats. However, treatment with IV only caused a 39.6 % decrease in glucose levels and a 14.6 % increase in body weights, whereas VACC decreased plasma glucose and increased body weights by up to 52.2 and 24.5 %, respectively. At the same time, VACC significantly improved trabecular microstructure and mechanical strength, while IV did not exhibit desirable such effects. Also, bone Ca and bone P were not significantly increased by IV. These results indicated that both VACC and IV have hypoglycemic activity on diabetic rats, while IV did not improve bone properties. In conclusion, this study suggests that VACC improves diabetes-related bone dysfunction, primarily by improving the diabetic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goodman WG, Hori MT (1984) Diminished bone formation in experimental diabetes. Relationship to osteoid maturation and mineralization. Diabetes 33:825–831

    Article  PubMed  CAS  Google Scholar 

  2. Strotmeyer ES, Cauley JA (2007) Diabetes mellitus, bone mineral density, and fracture risk. Curr Opin Endocrinol Diabetes Obes 14(6):429–435

    Article  PubMed  Google Scholar 

  3. Macey LR, Kana SM, Jingushi S, Terek RM, Borretos J, Bolander ME (1989) Defects of early fracture-healing in experimental diabetes. J Bone Joint Surg Am 71:722–733

    PubMed  CAS  Google Scholar 

  4. Katayama Y, Akatsu T, Yamamoto M, Kugai N, Nagata N (1996) Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. J Bone Miner Res 11:931–937

    Article  PubMed  CAS  Google Scholar 

  5. Buoillon R (1991) Diabetic bone disease. Calcif Tiss Int 49:155–160

    Article  Google Scholar 

  6. Kelsey JL, Browner WS, Seeley DG, Nevitt MC, Cummings SR (1992) Risk factors for fractures of the distal forearm and proximal humerus. Am J Epidemiol 135:477–489

    PubMed  CAS  Google Scholar 

  7. Meyer HE, Tverdal A, Falch JA (1993) Risk factors for hip fracture in middle-aged Norwegian women and men. Am J Epidemiol 137:1203–1211

    PubMed  CAS  Google Scholar 

  8. Cummings SR, Black DM, Rubin SM (1989) Lifetime risks of hip, Colles’, or vertebral fracture and coronary heart disease among white postmenopausal women. Arch Intern Med 149:2445–2448

    Article  PubMed  CAS  Google Scholar 

  9. Barrios C, Brostrom LA, Stark A, Walheim G (1993) Healing complications after internal fixation of trochanteric hip fractures: the prognostic value of osteoporosis. J Orthop Trauma 7:438–442

    Article  PubMed  CAS  Google Scholar 

  10. Heyliger CE, Tahiliani AG, McNeill JH (1985) Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 227:1474–1477

    Article  PubMed  CAS  Google Scholar 

  11. Fukui K, Fujisawa Y, OhyaNishiguchi H, Kamada H, Sakurai H (1999) In vivo coordination structural changes of a potent insulin-mimetic agent, bis (picolinato)oxovanadium(IV), studied by electron spin-echo envelope modulation spectroscopy. J Inorg Biochem 77:215–224

    Article  PubMed  CAS  Google Scholar 

  12. Scior T, Guevara-García A, Bernard P (2005) Are vanadium compounds drugable? Structures and effects of antidiabetic vanadium compounds: a critical review. Mini-Rev Med Chem 5:995–1008

    Article  PubMed  CAS  Google Scholar 

  13. McNeill JH, Yuen VG, Hoveyda HR (1992) Bis(maltolato)oxovanadium(IV) is a potent insulin mimic. J Med Chem 35(8):1489–1491

    Article  PubMed  CAS  Google Scholar 

  14. Sakurai H, Fujii K, Watanabe H (1995) Orally active and long-term acting insulin-mimetic vanadyl complex: bis (picolinato) oxovanadium (IV). Biochem Biophys Res Commun 214:1095–1101

    Article  PubMed  CAS  Google Scholar 

  15. Demirbas A (2001) Heavy metal bioaccumulation by mushrooms from artificially fortified soils. Food Chem 74:293–301

    Article  CAS  Google Scholar 

  16. Swanston-Flatt SK, Day C, Bailey CJ (1989) Evaluation of traditional plant treatments for diabetes: studies in streptozotocin diabetic mice. Acra Diaberologiu Larinu 26:51–55

    CAS  Google Scholar 

  17. Kiho T, Tsujimura Y, Sakushima M (1994) Polysaccharides in fungi. XXXIII. Hypoglycemic activity of an acidic polysaccharide (AC) from Tremella fuciformis. Yakugaku Zasshi (in Japanese) 114:308–315

    CAS  Google Scholar 

  18. Kiho T, Sobue S, Ukai S (1994) Structural features and hypoglycemic activities of two polysaccharides from a hot-water extract of Agrocybe cylindracea. Carbohydr Res 251:81–87

    Article  PubMed  CAS  Google Scholar 

  19. Han C, Cui B, Wang Y (2008) Vanadium uptake by biomass of Coprinus comatus and their effect on hyperglycemic mice. Biol Trace Elem Res 124:35–39

    Article  PubMed  CAS  Google Scholar 

  20. Han C, Liu T (2009) A comparison of hypoglycemic activity of three species of basidiomycetes rich in vanadium. Biol Trace Elem Res 127:177–182

    Article  PubMed  CAS  Google Scholar 

  21. Malinowska E, Szefer P, Falandaysz J (2004) Metals bioaccumulation by bay bolete, Xerocomus badius, from selected sites in Poland. Food Chem 84:405–416

    Article  CAS  Google Scholar 

  22. Han C, Yuan J, Wang Y (2006) Hypoglycemic activity of fermented mushroom of Coprinus comatus rich in vanadium. J Trace Elem Med Biol 20(3):191–196

    Article  PubMed  CAS  Google Scholar 

  23. Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37:1313–1320

    Article  PubMed  CAS  Google Scholar 

  24. Goto A, Tsukamoto I (2003) Increase in tartrate-resistant acid phosphatase of bone at the early stage of ascorbic acid deficiency in the ascorbate-requiring Osteogenic Disorder Shionogi (ODS) rat. Calcif Tissue Int 73:180–185

    Article  PubMed  CAS  Google Scholar 

  25. Domingo JL (2002) Vanadium and tungsten derivatives as antidiabetic agents: a review of their toxic effects. Biol Trace Elem Res 88:97–112

    Article  PubMed  CAS  Google Scholar 

  26. McNair P, Madsbad S, Christensen MS, Christiansen C, Faber OK, Binder C, Transbol I (1979) Bone mineral loss in insulin-treated diabetes mellitus: studies on pathogenesis. Acta Endocrinol (Copenh) 90:463–472

    CAS  Google Scholar 

  27. Raskin P, Stevenson MRM, Barilla DE, Pak CC (1978) The hypercalciuria of diabetes mellitus: its amelioration with insulin. Clin Endocrinol 9:329–335

    Article  CAS  Google Scholar 

  28. Tenbaum E (1896) Ueber Kalkausscheidung durch den Harn bei Diabetes. Z Biol 33:379–403

    CAS  Google Scholar 

  29. Weiss RE, Reddi AH (1980) Influence of experimental diabetes and insulin on matrix-induced cartilage and bone differentiation. Am J Physio 238:E200–E207

    CAS  Google Scholar 

  30. Balint E, Szabo P, Marshall CF, Sprague SM (2001) Glucose-induced inhibition of in vitro bone mineralization. Bone 28:21–28

    Article  PubMed  CAS  Google Scholar 

  31. Kayath MJ, Tavares EF, Dib SA, Vieira JGH (1998) Prospective bone mineral density evaluation in patients with insulin-dependent diabetes mellitus. J Diab Compl 12:133–139

    Article  CAS  Google Scholar 

  32. Levin ME, Boisseau VC, Avioli LV (1976) Effects of diabetes mellitus on bone mass in juvenile and adult-onset diabetes. N Engl J Med 294:241–244

    Article  PubMed  CAS  Google Scholar 

  33. Mathiassen B, Nielsen S, Ditzel J, Rodbro P (1990) Long term bone loss in insulin-dependent diabetes mellitus. J Int Med 227:325–327

    Article  CAS  Google Scholar 

  34. McNair P (1988) Bone mineral metabolism in human type I (insulin dependent) diabetes mellitus. Dan Med Bull 35:109–121

    PubMed  CAS  Google Scholar 

  35. Quarles LD, Yohai DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692

    Article  PubMed  CAS  Google Scholar 

  36. Wiske PS, Wentworth SM, Norton JA, Epstein S, Johnson CC (1982) Evaluation of bone mass and growth in young diabetics. Metabolism 31:848–854

    Article  PubMed  CAS  Google Scholar 

  37. Bauer JS, Kohlmann S, Eckstein F, Mueller D, Lochmüller E-M, Link TM (2006) Structural analysis of trabecular bone of the proximal femur using multislice computed tomography: a comparison with dual X-ray absorptiometry for predicting biomechanical strength in vitro. Calcif Tissue Int 78:78–89

    Article  PubMed  CAS  Google Scholar 

  38. Link TM, Vieth V, Langenberg R, Meier N, Lotter A, Newitt D, Majumdar S (2003) Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif Tissue Int 72:156–165

    Article  PubMed  CAS  Google Scholar 

  39. Link TM (2001) Changes in trabecular bone structure assessed by high-resolution MRI in patients after transplantation. Adv Exp Med Biol 496:31–36

    Article  PubMed  CAS  Google Scholar 

  40. Link T, Majumdar S, Augat P, Lin J, Newitt D, LuY LN, Genant H (1998) In vivo high resolutionMRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182

    Article  PubMed  CAS  Google Scholar 

  41. Link T, Saborowski S, Kisters K, Kempkes M, Kosch M, Newitt D, Lu Y, Waldt S, Majumdar S (2002) Changes in calcaneal trabecular bone structure assessed with high resolution MRI in patients with kidney transplantation. Osteoporos Int 2002:119–129

    Article  Google Scholar 

  42. Binz K, Hunziker EB, Schmid CH, Frosch ER (1990) Osteoporosis in adult streptozotocin diabetic rats is cured by insulin but not by insulin-like growth factor (IGF1). Trans 36th Orthopaed Res Soc 15:566

    Google Scholar 

  43. Glajchen N, Epstein S, Ismail F, Thomas S, Fallen M et al (1988) Bone mineral metabolism in experimental diabetes: osteocalcin as a measure of bone remodelling. Endocrinology 123:290–295

    Article  PubMed  CAS  Google Scholar 

  44. Itaya T (1988) Histopathoiogy and microradiograph of changes in rat-tibia epiphyseal cartilage after streptozotocin administration. Shikawa Gakuho 88:1459–1477

    CAS  Google Scholar 

  45. Hough S, Avioli VL, Bergfeld MA, Fallon MD, Slatopolsky E et al (1981) Correction of abnormal bone and mineral metabolism in chronic streptozotocin-induced diabetes mellitus in the rat by insulin therapy. Endocrinology 108:2228–2234

    Article  PubMed  CAS  Google Scholar 

  46. Shires R, Teitelbaum SL, Bergfeld MA, Fallen MD, Slatopolsky E et al (1981) The effect of streptozotocin-induced chronic diabetes mellitus on bone mineral homeostasis in the rat. J Lab Clin Med 97:231–240

    PubMed  CAS  Google Scholar 

  47. Thomas DM, Hards DK, Rogers SD, Ng KW, Best JD (1996) Insulin receptor expression in bone. J Bone Miner Res 11:1312–1320

    Article  PubMed  CAS  Google Scholar 

  48. Cornish J, Callon KE, Reid IR (1996) Insulin increases histomorphometric indices of bone formation in vivo. Calcif Tissue Int 59:492–495

    PubMed  CAS  Google Scholar 

  49. Pei Y, Fu Q (2011) The effects of vanadium (V) absorbed by Coprinus comatus on bone in streptozotocin-induced diabetic rats. Biol Trace Elem Res 142:748–759

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., He, M., Yi, P. et al. Comparison of Effects of Vanadium Absorbed by Coprinus comatus with Those of Inorganic Vanadium on Bone in Streptozotocin-Diabetic Rats. Biol Trace Elem Res 149, 391–398 (2012). https://doi.org/10.1007/s12011-012-9437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9437-2

Keywords

Navigation