Skip to main content
Log in

Trichosanthes dioica Fruit Ameliorates Experimentally Induced Arsenic Toxicity in Male Albino Rats Through the Alleviation of Oxidative Stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present work was focused to evaluate the ameliorative property of aqueous extract of Trichosanthes dioica fruit (AQ T. dioica fruit) against arsenic-induced toxicity in male Wistar albino rats. AQ T. dioica fruit was administered orally to rats at 50 and 100 mg/kg body weight for 20 consecutive days prior to oral administration of sodium arsenite (10 mg/kg) for 10 days. Then the rats were sacrificed for the evaluation of body weights, organ weights, hematological profile, serum biochemical profile, and hepatic and renal antioxidative parameters viz. lipid peroxidation, reduced and oxidized glutathione, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and DNA fragmentation. Pretreatment with AQ T. dioica fruit at both doses markedly and significantly normalized body weights, organ weights, hematological profiles, and serum biochemical profile in arsenic-treated animals. Further, AQ T. dioica fruit pretreatment significantly modulated all the aforesaid hepatic and renal biochemical perturbations and reduced DNA fragmentation in arsenic-intoxicated rats. Therefore, from the present findings, it can be concluded that T. dioica fruit possessed remarkable value in amelioration of arsenic-induced hepatic and renal toxicity, mediated by alleviation of arsenic-induced oxidative stress by multiple mechanisms in male albino rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh AK (2006) Chemistry of arsenic in groundwater of Ganges–Brahmaputra river basin. Curr Sci 91:599–606

    CAS  Google Scholar 

  2. Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67–78

    Article  PubMed  CAS  Google Scholar 

  3. Anonymous (2003) Guidelines for drinking water quality. World Health Organization, Geneva

  4. Kapaj S, Peterson H, Liber K, Bhattacharya P (2006) Human health effects from chronic arsenic poisoning—a review. J Environ Sci Health A 41:2399–2428

    CAS  Google Scholar 

  5. Guha Mazumder DN (2008) Chronic arsenic toxicity and human health. Indian J Med Res 128:436–447

    PubMed  CAS  Google Scholar 

  6. Brinkel J, Khan MMH, Kraemer A (2009) A systematic review of arsenic exposure and its social and mental health effects with special reference to Bangladesh. Int J Environ Res Public Health 6:1609–1619

    Article  PubMed  Google Scholar 

  7. Aposhian HV (1989) Biochemical toxicology of arsenic. Rev Biochem Toxicol 10:265–299

    CAS  Google Scholar 

  8. Mo J, Xia Y, Wade TJ, Schmitt M, Le XC, Dang R, Mumford JL (2006) Chronic arsenic exposure and oxidative stress: OGG1 expression and arsenic exposure nail selenium, and skin hyperkeratosis in Inner Mongolia. Environ Health Perspect 114:835–841

    Article  PubMed  CAS  Google Scholar 

  9. Mehta A, Flora SJS (2001) Possible role of metal redistribution, hepatotoxicity and oxidative stress in chelating agents induced hepatic and renal metallothionein in rats. Food Chem Toxicol 39:1039–1043

    Article  Google Scholar 

  10. Kirtikar KR, Basu BD (1935) Indian medicinal plants. Bishen Singh Mahendra Pal Singh, New Delhi

    Google Scholar 

  11. Anonymous (1976) The wealth of India: raw materials. Publication and Information Directorate, CSIR, New Delhi

  12. Nadkarni KM (1976) Indian materia medica. Popular Prakashan, Bombay

    Google Scholar 

  13. Sharma PC, Yelne MB, Dennis TJ (2002) Database on medicinal plants used in Ayurveda. Central Council for Research in Ayurveda and Siddha, New Delhi

    Google Scholar 

  14. Khare CP (2007) Indian medicinal plants: an illustrated dictionary. Springer, Berlin

    Google Scholar 

  15. Sharma G, Pant MC (1988) Preliminary observations on serum biochemical parameters of albino rabbits fed on seeds of Trichosanthes dioica (Roxb). Indian J Med Res 87:398–400

    PubMed  CAS  Google Scholar 

  16. Sharma G, Pant MC (1988) Effect of raw deseeded fruit powder of Trichosanthes dioica (Roxb.) on blood sugar, serum cholesterol, high density lipoprotein, phospholipid and triglyceride levels in the normal albino rabbits. Indian J Physiol Pharmacol 32:161–163

    PubMed  CAS  Google Scholar 

  17. Sharma G, Pant MC (1988) Effect of feeding Trichosanthes dioica (Parval) whole fruits on blood glucose, serum triglycerides, phospholipid, cholesterol and high density lipoprotein-cholesterol levels in the normal albino rabbits. Curr Sci 57:1085–1087

    Google Scholar 

  18. Sharma G, Pandey DN, Pant MC (1990) Biochemical evaluation of feeding Trichosanthes dioica seeds in normal and mild diabetic human subjects in relation to lipid profile. Indian J Physiol Pharmacol 34:146–148

    PubMed  CAS  Google Scholar 

  19. Kabir S (2000) The novel peptide composition of the seeds of Trichosanthes dioica Roxb. Cytobios 103:121–131

    PubMed  CAS  Google Scholar 

  20. Sultan NA, Kenoth R, Swamy MJ (2004) Purification, physicochemical characterization, saccharide specificity and chemical modification of a Gal/GalNAc specific lectin from the seeds of Trichosanthes dioica. Arch Biochem Biophys 432:212–221

    Article  PubMed  CAS  Google Scholar 

  21. Sultan NA, Swamy MJ (2005) Fluorescence quenching and time-resolved fluorescence studies on Trichosanthes dioica seed lectin. J Photochem Photobiol 80:93–100

    Article  CAS  Google Scholar 

  22. Sharmila BG, Kumar G, Rajasekara PM (2007) Cholesterol lowering activity of the aqueous fruit extract of Trichosanthes dioica Roxb. in normal and streptozotocin diabetic rats. J Clin Diag Res 1:561–569

    Google Scholar 

  23. Ghaisas MM, Tanwar MB, Ninave PB, Navghare VV, Takawale AR, Zope VS, Deshpande AD (2008) Hepatoprotective activity of aqueous and ethanolic extract of Trichosanthes dioica Roxb. in ferrous sulphate-induced liver injury. Pharmacologyonline 4:127–135

    Google Scholar 

  24. Rai PK, Jaiswal D, Rai DK, Sharma B, Watal G (2008) Effect of water extract of Trichosanthes dioica fruits in streptozotocin induced diabetic rats. Indian J Clin Biochem 23:387–390

    Article  Google Scholar 

  25. Rai PK, Jaiswal D, Diwakar S, Watal G (2008) Antihyperglycemic profile of Trichosanthes dioica seeds in experimental models. Pharm Biol 46:360–365

    Article  Google Scholar 

  26. Harborne JB (1998) Phytochemical methods, a guide to modern techniques of plant analysis. Springer (India), New Delhi

    Google Scholar 

  27. Berlin A, Schaller KH (1974) European standardized method for the determination of delta aminolevulinic acid dehydratase activity in blood. Zeit Klin Chem Klin Biochem 12:389–390

    CAS  Google Scholar 

  28. D’Armour FE, Blood FR, Belden DA (1965) The manual for laboratory works in mammalian physiology. The University of Chicago Press, Chicago

    Google Scholar 

  29. Wintrobe MM, Lee GR, Boggs DR, Bithel TC, Athens JW, Foerster J (1961) Clinical haematology. Les & Febiger, Philadelphia

    Google Scholar 

  30. Dacie JV, Lewis SM (1958) Practical hematology. Churchill, London

    Google Scholar 

  31. Bergmeyer HU, Scelibe P, Wahlefeld AW (1978) Optimization of methods of aspartate aminotransferase and alanine aminotransferase. Clin Chem 4:58–61

    Google Scholar 

  32. King J (1965) The hydrolases-acid and alanine phosphatase. In: Van D (ed) Practical clinical enzymology. Nostrand, London, pp 191–208

    Google Scholar 

  33. Pearlman FC, Lee RTY (1974) Detection and measurement of total bilirubin in serum, with use of surfactants as solubilizing agents. Clin Chem 20:447–453

    PubMed  CAS  Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  35. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  36. Hissin PJ, Hilf R (1973) A fluorometric method for the determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–216

    Article  Google Scholar 

  37. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferase, the first step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  38. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Meth Enzymol 105:114–121

    Article  PubMed  CAS  Google Scholar 

  39. Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5-dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  PubMed  CAS  Google Scholar 

  40. Kakkar P, Das B, Visvanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    PubMed  CAS  Google Scholar 

  41. Sinha KA (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  PubMed  CAS  Google Scholar 

  42. Sellins KS, Cohen JJ (1987) Gene induction by α-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 139:3199–3206

    PubMed  CAS  Google Scholar 

  43. Kitchin KT (2001) Recent advances in carcinogenesis: modes of action, animal model systems and methylated arsenic metabolites. Toxicol Appl Pharm 172:249–261

    Article  CAS  Google Scholar 

  44. Thomas DJ, Styblo M, Lin S (2001) The cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharmacol 176:127–144

    Article  PubMed  CAS  Google Scholar 

  45. Bhadauria S, Flora SJS (2003) Arsenic induced inhibition of δ-aminolevulinic acid dehydratase activity in rat blood and its response to meso 2, 3-dimercaptosuccinic acid and monoisoamyl DMSA. Biomed Environ Sci 17:305–313

    Google Scholar 

  46. Bhatt K, Flora SJS (2009) Oral co-administration of α-lipoic acid, quercetin and captopril prevents gallium arsenide toxicity in rats. Environ Toxicol Pharmacol 28:140–146

    Article  PubMed  CAS  Google Scholar 

  47. Liu J, Waalkes MP (2008) Liver is a target of arsenic carcinogenesis. Toxicol Sci 105:24–32

    Article  PubMed  CAS  Google Scholar 

  48. Haldar PK, Adhikari S, Bera S, Bhattacharya S, Panda SP, Kandar CC (2011) Hepatoprotective efficacy of Swietenia mahagoni L. Jacq. (Meliaceae) bark against paracetamol-induced hepatic damage in rats. Indian J Pharm Educ Res 45:108–113

    Google Scholar 

  49. Awad ME, Abdel-Rahman MS, Hassan SA (1998) Acrylamide toxicity in isolated rat hepatocytes. Toxicol in Vitro 12:699–704

    Article  PubMed  CAS  Google Scholar 

  50. Thomas W, Sedlak MD, Solomon H, Snyder MD (2004) Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 113:1776–1782

    Article  Google Scholar 

  51. Chinoy NJ, Memon MR (2001) Beneficial effects of some vitamins and calcium on fluoride and aluminum toxicity on gastrocnemius muscle and liver of male mice. Fluoride 34:21–33

    CAS  Google Scholar 

  52. Yousef MI, El-Demerdash FM, Radwan FME (2008) Sodium arsenite induced biochemical perturbations in rats: ameliorating effect of curcumin. Food Chem Toxicol 46:3506–3511

    Article  PubMed  CAS  Google Scholar 

  53. Manna P, Sinha M, Sil PC (2008) Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid. Arch Toxicol 82:137–149

    Article  PubMed  CAS  Google Scholar 

  54. Yoshikawa T, Tanaka H, Yoshid H, Sato O, Sugino N, Kondo M (1983) Adjuvant arthritis and lipid peroxidation protection by superoxide dismutase. Lipid Peroxides Res 7:108–112

    Google Scholar 

  55. Gutteridge JMC (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    PubMed  CAS  Google Scholar 

  56. Singh S, Rana SVS (2007) Amelioration of arsenic toxicity by L-ascorbic acid in laboratory rat. J Environ Biol 28:377–384

    PubMed  CAS  Google Scholar 

  57. Yamanaka K, Hesegwa A, Sawamuna R, Okada S (1991) Cellular response to oxidative damage in lung induced by the administration of dimethylarsinic acid, a major metabolite of inorganic arsenics, in mice. Toxicol Appl Pharmacol 108:205–213

    Article  PubMed  CAS  Google Scholar 

  58. Gupta R, Kannan GM, Sharma M, Flora SJS (2005) Therapeutic effects of Moringa oleifera on arsenic induced toxicity in rats. Environ Toxicol Pharmacol 20:456–464

    Article  PubMed  CAS  Google Scholar 

  59. Haldar PK, Bhattacharya S, Dewanjee S, Mazumder UK (2011) Chemopreventive efficacy of Wedelia calendulaceae against 20-methylcholanthrene-induced carcinogenesis in mice. Environ Toxicol Pharmacol 31:10–17

    Article  PubMed  CAS  Google Scholar 

  60. Dynyelle TM, Kenneth TD (2003) The role of glutathione S-transferase on anticancer drug resistance. Drug Resist 22:7369–7375

    Google Scholar 

  61. Wang TS, Shu YF, Liu YC, Jan KY, Huang H (1997) Glutathione peroxidase and catalase modulate the genotoxicity of arsenite. Toxicol 121:229–237

    Article  CAS  Google Scholar 

  62. Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Meth Enzymol 348:93–112

    Article  PubMed  CAS  Google Scholar 

  63. Gmunder H, Droge W (1991) Differential effects of glutathione depletion on T-cell subsets. Cell Immunol 138:229–237

    Article  PubMed  CAS  Google Scholar 

  64. Styblo M, Yamauchi H, Thomas DJ (1995) Comparative in vitro methylation of trivalent and pentavalent arsenicals. Toxicol Appl Pharmacol 135:172–178

    Article  PubMed  CAS  Google Scholar 

  65. Shimizu M, Hochadel JF, Fulmer BA, Waalkes MP (1998) Effect of glutathione depletion and metallothionein gene expression on arsenic induced cytotoxicity and c-myc expression in vitro. Toxicol Sci 45:204–211

    PubMed  CAS  Google Scholar 

  66. Vahter M (2002) Mechanisms of arsenic biotransformation. Toxicol 181:211–217

    Article  Google Scholar 

  67. Li D, Morimoto K, Takeshita T, Lu Y (2001) Arsenic induces DNA damage via reactive oxygen species in human cells. Environ Health Prev Med 6:27–32

    Article  PubMed  CAS  Google Scholar 

  68. Kessel M, Liu SX, Xu A, Santella R, Hei TK (2002) Arsenic induces oxidative DNA damage in mammalian cells. Mol Cell Biochem 234:301–308

    Article  PubMed  Google Scholar 

  69. Das AK, Bag S, Sahu R, Dua TK, Sinha MK, Gangopadhyay M, Zaman K, Dewanjee S (2010) Protective effect of Corchorus olitorius leaves on sodium arsenite-induced toxicity in experimental rats. Food Chem Toxicol 48:326–335

    Article  PubMed  CAS  Google Scholar 

  70. Bhattacharya S (2011) Are we in the polyphenols era? Pharmacognosy Res 3:147

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the All India Council of Technical Education (AICTE), New Delhi, India for providing technical supports for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjib Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, S., Haldar, P.K. Trichosanthes dioica Fruit Ameliorates Experimentally Induced Arsenic Toxicity in Male Albino Rats Through the Alleviation of Oxidative Stress. Biol Trace Elem Res 148, 232–241 (2012). https://doi.org/10.1007/s12011-012-9363-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9363-3

Keywords

Navigation