Skip to main content
Log in

Excess Dietary Sodium Selenite Alters Apoptotic Population and Oxidative Stress Markers of Spleens in Broilers

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Three hundred 1-day-old avian broilers were fed on a basic diet (0.2 mg/kg selenium) or the same diet amended to contain 1, 5, 10, and 15 mg/kg selenium supplied as sodium selenite (n = 60/group). In comparison with those of 0.2 mg/kg selenium group, the percentages of annexin V-positive splenocytes were increased in 5, 10, and 15 mg/kg selenium groups. TUNEL assay revealed that apoptotic cells with brown-stained nuclei distributed within the red pulp and white pulp of the spleens with increased frequency of occurrence in 10 and 15 mg/kg selenium groups in comparison with that of 0.2 mg/kg Se group. Sodium selenite-induced oxidative stress in spleens of chickens was evidenced by decrease in glutathione peroxidase, superoxide dismutase, and catalase activities and increase in malondialdehyde contents. The results indicate that excess dietary selenium in the range of 5–15 mg/kg of feed causes oxidative stress, which may be mainly responsible for the increased apoptosis of splenocytes in chickens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gladyshev VM, Hatfield DL (1999) Selenocysteine-containing proteins in mammals. J Biomed Sci 6:151–160

    Article  PubMed  CAS  Google Scholar 

  2. Rotruck JT, Pope AL, Ganther HE et al (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  PubMed  CAS  Google Scholar 

  3. Spallholz JE (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radic Biol Med 17:45–64

    Article  PubMed  CAS  Google Scholar 

  4. Kramer GF, Ames BN (1988) Mechanisms of mutagenicity and toxicity of sodium selenite (Na2SeO3) in Salmonella typhimurium. Mutat Res 201:169–180

    Article  PubMed  CAS  Google Scholar 

  5. Spallholz JE (1997) Free radical generation by selenium compounds and their prooxidant toxicity. Biomed Environ Sci 10:260–270

    PubMed  CAS  Google Scholar 

  6. Seko Y, Imura N (1997) Active oxygen generation as a possible mechanism of selenium toxicity. Biomed Environ Sci 10:333–339

    PubMed  CAS  Google Scholar 

  7. Terada A, Yoshida M, Seko Y et al (1999) Active oxygen species generation and cellular damage by additives of parenteral preparations: selenium and sulfhydryl compounds. Nutrition 15:651–655

    Article  PubMed  CAS  Google Scholar 

  8. Spallholz JE, Palace VP, Reid TW (2004) Methioninase and selenomethionine but not Se-methylselenocysteine generate methylselenol and superoxide in an in vitro chemiluminescent assay: implications for the nutritional carcinostatic activity of selenoamino acids. Biochem Pharmacol 67:547–554

    Article  PubMed  CAS  Google Scholar 

  9. Lu J, Jiang C, Kaeck M, Ganther H et al (1995) Dissociation of the genotoxic and growth inhibitory effects of selenium. Biochem Pharmacol 50:213–219

    Article  PubMed  CAS  Google Scholar 

  10. Lu J, Kaeck M, Jiang C, Wilson AC et al (1994) Selenite induction of DNA strand breaks and apoptosis in mouse leukemic L1210 cells. Biochem Pharmacol 47:1531–1535

    Article  PubMed  CAS  Google Scholar 

  11. Zhou N, Xiao H, Li TK et al (2003) DNA damage-mediated apoptosis induced by selenium compounds. J Biol Chem 278:29532–29537

    Article  PubMed  CAS  Google Scholar 

  12. Kim YS, Jhon DY, Lee DY (2004) Involvement of ROS and JNK1 in selenite-induced apoptosis in Chang liver cells. Exp Mol Med 36:157–164

    PubMed  CAS  Google Scholar 

  13. Letavayová L, Vlčková V, Brozmanová J (2006) Selenium: from cancer prevention to DNA damage. Toxicology 227:1–14

    Article  PubMed  Google Scholar 

  14. Peng X, Cui H, Deng J et al (2011) Histological lesion of spleen and inhibition of splenocyte proliferation in broilers fed on diets excess in selenium. Biol Trace Elem Res. doi:10.1007/s12011-010-8679-0

  15. Peng X, Cui Y, Cui W et al (2009) The decrease of relative weight, lesions, and apoptosis of bursa of Fabricius induced by excess dietary selenium in chickens. Biol Trace Elem Res 131(1):33–42

    Article  PubMed  CAS  Google Scholar 

  16. Peng X, Cui H, Cui Y et al (2011) Lesions of thymus and decreased percentages of the peripheral blood T-cell subsets in chickens fed on diets excess in selenium. Hum Exp Toxicol. doi:10.1177/0960327111403176

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  18. Chen T, Cui HM, Cui Y et al (2010) Decreased antioxidase activities and oxidative stress in the spleen of chickens fed on high fluorine diets. Hum Exp Toxicol. doi:10.1177/0960327110388538

  19. Miksa IR, Buckley CL, Carpenter NP et al (2005) Comparison of selenium determination in liver samples by atomic absorption spectroscopy and inductively coupled plasma-mass spectrometry. J Vet Diagn Invest 17:331–340

    Article  PubMed  Google Scholar 

  20. Weiller M, Latta M, Kresse M et al (2004) Toxicity of nutritionally available selenium compounds in primary and transformed hepatocytes. Toxicology 201:21–30

    Article  PubMed  CAS  Google Scholar 

  21. Shen CL, Song W, Pence BC (2001) Interactions of selenium compounds with other antioxidants in DNA damage and apoptosis in human normal keratinocytes. Cancer Epidemiol Biomarkers Prev 10:385–390

    PubMed  CAS  Google Scholar 

  22. Garberg P, Stahl A, Warholm M et al (1988) Studies of the role of DNA fragmentation in selenium toxicity. Biochem Pharmacol 37:3401–3406

    Article  PubMed  CAS  Google Scholar 

  23. Biswas S, Talukder G, Sharma A (1997) Selenium salts and chromosome damage. Mutat Res 390:201–205

    PubMed  CAS  Google Scholar 

  24. 2011Biswas S, Talukder G, Sharma A (2000) Chromosome damage induced by selenium salts in human peripheral lymphocytes. Toxicol In Vitro 14:405–408

    Article  PubMed  CAS  Google Scholar 

  25. Combs GF Jr, Gray WP (1998) Chemopreventive agents: selenium. Pharmacol Ther 79:179–192

    Article  PubMed  CAS  Google Scholar 

  26. Seboussi R, Faye B, Alhadrami G et al (2010) Selenium distribution in camel blood and organs after different level of dietary selenium supplementation. Biol Trace Elem Res 133(1):34–50

    Article  PubMed  CAS  Google Scholar 

  27. Mona MAH (2011) Toxicological study of sodium selenite on fetal development and DNA fragmentation in liver cells of pregnant rats. Biol Trace Elem Res. doi:10.1007/s12011-010-8682-5

  28. Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5 Suppl):715S–725S

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by Program for Changjiang Scholars and Innovative Research Team in University (IRT 0848) and Education Department of Sichuan Province (09ZZ017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengmin Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, X., Cui, H., He, Y. et al. Excess Dietary Sodium Selenite Alters Apoptotic Population and Oxidative Stress Markers of Spleens in Broilers. Biol Trace Elem Res 145, 47–51 (2012). https://doi.org/10.1007/s12011-011-9160-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9160-4

Keywords

Navigation