Skip to main content
Log in

Cellular Toxicity of TiO2 Nanoparticles in Anatase and Rutile Crystal Phase

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Titanium dioxide nanoparticles are massively produced and widely used in daily life, which has posed potential risk to human health. However, the molecular mechanism of TiO2 nanoparticles (NPs) with different crystal phases is not clear. In this study, the characterization of two crystalline phases of TiO2 NPs is evaluated by transmission electron microscopy and X-ray absorption fine structure spectrum; an interaction of these TiO2 NPs with HaCaT cells is studied in vitro using transmission electron microscopy, chemical precipitation method, and X-ray absorption fine structure spectrometry. The coordination and surface properties indicate that only the anatase–TiO2 NPs allow spontaneous reactive oxygen species (ROS) generation, but rutile–TiO2 NPs do not after dispersion. The interaction between TiO2 NPs and cellular components might also generate ROS for both anatase–TiO2 NPs and rutile–TiO2 NPs. The ROS generation could lead to cellular toxicity if the level of ROS production overwhelms the antioxidant defense of the cell or induces the mitochondrial apoptotic mechanisms. Furthermore, Ti had a direct combination with some protein or DNA after NPs enter the cell, which could also lead to cellular toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allen NS et al (2005) Photocatalytic coatings for environmental applications. Photochem Photobiol 81(2):279–290 (in English)

    Article  PubMed  CAS  Google Scholar 

  2. Wolf R, Matz H, Orion E, Lipozencic J (2003) Sunscreens—the ultimate cosmetic. Acta Dermatovenerol Croat 11(3):158–162 (in English)

    PubMed  Google Scholar 

  3. Kaida T, Kobayashi K, Adachi M, Suzuki F (2004) Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics. J Cosmet Sci 55(2):219–220 (in English)

    PubMed  Google Scholar 

  4. Zhang AP, Sun YP (2004) Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J Gastroenterol 10(21):3191–3193 (in English)

    PubMed  CAS  Google Scholar 

  5. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627 (in English)

    Article  PubMed  CAS  Google Scholar 

  6. Auffan M et al (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641 (in English)

    Article  PubMed  CAS  Google Scholar 

  7. Ramires PA, Romito A, Cosentino F, Milella E (2001) The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials 22(12):1467–1474 (in English)

    Article  PubMed  CAS  Google Scholar 

  8. Brumfiel G (2003) Nanotechnology: a little knowledge. Nature 424(6946):246–248 (in English)

    Article  PubMed  CAS  Google Scholar 

  9. Li N et al (2010) Interaction between nano-anatase TiO2 and liver DNA from mice in vivo. Nanoscale Res Lett 5(1):108–115, in English

    Article  CAS  Google Scholar 

  10. Wang J et al (2008) Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183(1–3):72–80 (in English)

    Article  PubMed  CAS  Google Scholar 

  11. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170 (in English)

    Article  PubMed  CAS  Google Scholar 

  12. Service RF (2004) Nanotoxicology. Nanotechnology grows up. Science 304(5678):1732–1734 (in English)

    Article  PubMed  CAS  Google Scholar 

  13. Xia T et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807 (in English)

    Article  PubMed  CAS  Google Scholar 

  14. Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77(1):3–5 (in English)

    Article  PubMed  CAS  Google Scholar 

  15. Hirakawa K, Mori M, Yoshida M, Oikawa S, Kawanishi S (2004) Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic Res 38(5):439–447 (in English)

    Article  PubMed  CAS  Google Scholar 

  16. Braydich-Stolle LK et al (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11(6):1361–1374, in English

    Article  CAS  Google Scholar 

  17. Rehr JJ, Albers RC, Zabinsky SI (1992) High-order multiple-scattering calculations of X-ray-absorption fine structure. Phys Rev Lett 69(23):3397–3400 (in English)

    Article  PubMed  CAS  Google Scholar 

  18. Troger L et al (1994) Determination of bond lengths, atomic mean-square relative displacements, and local thermal expansion by means of soft-X-ray photoabsorption. Phys Rev B Condens Matter 49(2):888–903 (in English)

    Article  PubMed  Google Scholar 

  19. Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13):1565–1573 (in English)

    Article  PubMed  CAS  Google Scholar 

  20. Wilhelm C et al (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24(6):1001–1011 (in English)

    Article  PubMed  CAS  Google Scholar 

  21. Wang JJ, Sanderson BJ, Wang H (2007) Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res 628(2):99–106 (in English)

    PubMed  CAS  Google Scholar 

  22. Gupta AK, Berry C, Gupta M, Curtis A (2003) Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. IEEE Trans Nanobioscience 2(4):255–261 (in English)

    Article  PubMed  Google Scholar 

  23. Kim JS et al (2006) Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci 7(4):321–326 (in English)

    PubMed  Google Scholar 

  24. Grunes LA (1983) Study of the K edges of 3d transition metals in pure and oxide form by X-ray-absorption spectroscopy. Phys Rev B 27:2111–2131

    Article  CAS  Google Scholar 

  25. Hamann DR (1997) Adaptive-coordinate electronic structure of 3d bands: TiO2. Phys Rev B 56(23):14979–14984 (in English)

    Article  CAS  Google Scholar 

  26. Vittadini A, Selloni A, Rotzinger FP, Gratzel M (1998) Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys Rev Lett 81(14):2954–2957 (in English)

    Article  CAS  Google Scholar 

  27. Kim SK, Hwang GW, Kim WD, Hwang CS (2006) Transformation of the crystalline structure of an ALD TiO2 film on a Ru electrode by O-3 pretreatment. Electrochem Solid St 9(1):F5–F7 (in English)

    Article  CAS  Google Scholar 

  28. Grassian VH, O'Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS (2007) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115(3):397–402 (in English)

    Article  PubMed  CAS  Google Scholar 

  29. Nel A (2005) Atmosphere. Air pollution-related illness: effects of particles. Science 308(5723):804–806 (in English)

    Article  PubMed  CAS  Google Scholar 

  30. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ (2004) Nanotoxicology. Occup Environ Med 61(9):727–728 (in English)

    Article  PubMed  CAS  Google Scholar 

  31. Rothen-Rutishauser B, Muhlfeld C, Blank F, Musso C, Gehr P (2007) Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part Fibre Toxicol 4:9 (in English)

    Article  PubMed  Google Scholar 

  32. Geiser M et al (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560 (in English)

    Article  PubMed  Google Scholar 

  33. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4346–4352 (in English)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a project supported by the State Key Development Program for Basic Research of China (grant no. 2006CB932505) and project supported by the Shanghai Committee of Science and Technology, China (grant no. 0752nm020). The authors would like to express their thanks to the XAFS station of the Shanghai Synchrotron Radiation Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ji Yang.

Additional information

Chan Jin and Ying Tang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, C., Tang, Y., Yang, F.G. et al. Cellular Toxicity of TiO2 Nanoparticles in Anatase and Rutile Crystal Phase. Biol Trace Elem Res 141, 3–15 (2011). https://doi.org/10.1007/s12011-010-8707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8707-0

Keywords

Navigation