Skip to main content

Advertisement

Log in

Synergistic Effect of Selenium and Melatonin on Neuroprotection in Cerebral Ischemia in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The synergistic scavenger effects of selenium and melatonin collectively we called Se-Mel was studied on the prevention of neuronal injury induced by ischemia/reperfusion. Male Wistar rats were treated with sodium selenite (0.1 mg/kg, i.p.) and melatonin (10 mg/kg, i.p.) 30 min before the middle carotid artery occlusion (MCAO) and immediately after MCAO to male Wistar rats and was continued for 3 days once daily at the interval of 24 h. Behavioral activity (spontaneous motor activity and motor deficit) was improved in Se-Mel-treated rats as compared to MCAO group rats. The level of glutathione and the activity of antioxidant enzymes was depleted significantly while the content of thiobarbituric acid reactive substances, protein carbonyl, and nitric oxide radical (NO·) was increased significantly in MCAO group. Systemic administration of Se-Mel ameliorated oxidative stress and improves ischemia/reperfusion-induced focal cerebral ischemia. Se-Mel also inhibited inducible nitric oxide synthase expression in Se-Mel+MCAO group as compared to MCAO group rats. Thus, Se-Mel has shown an excellent neuroprotective effect against ischemia/reperfusion injury through an anti-ischemic pathway. In conclusion, we demonstrated that the pretreatment with Se-Mel at the onset of reperfusion, reduced post-ischemic damage, and improved neurological outcome following transient focal cerebral ischemia in male Wistar rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lewen A, Matz P, Chan PH (2000) Free radical pathway in CNS injury. J Neurotrauma 17:871–890

    Article  CAS  PubMed  Google Scholar 

  2. Cuzzocrea S, Riley DP, Caputi AP et al (2001) Antioxidative therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev 53:135–159

    CAS  PubMed  Google Scholar 

  3. Kontos HA (2001) Oxygen radicals in cerebral ischemia. Stroke 32:2712–2716

    Article  CAS  PubMed  Google Scholar 

  4. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  CAS  PubMed  Google Scholar 

  5. Zafar KS, Siddiqui A, Sayeed I et al (2003) Dose-dependent protective effect of selenium in rat model of Parkinson's disease: neurobehavioural and neurochemical evidences. J Neurochem 84:438–446

    Article  CAS  PubMed  Google Scholar 

  6. Ansari MA, Ahmad AS, Ahmad M et al (2004) Selenium protects cerebral ischemia in rat brain mitochondria. Biol Trace Elem Res 101:73–86

    Article  CAS  PubMed  Google Scholar 

  7. Islam F, Zia S, Sayeed I et al (2002) Selenium induced alteration on lipids, lipid peroxidation, and thiol group in circadian rhythm centers of rat. Biol Trace Elem Res 90:1–12

    Article  Google Scholar 

  8. Gupta R, Singh M, Sharma A (2003) Neuroprotective effect of antioxidants on ischaemia and reperfusion-induced cerebral injury. Pharmacol Res 48:209–215

    Article  CAS  PubMed  Google Scholar 

  9. Kilic E, Kilic U, Yulug B (2004) Melatonin reduces disseminates neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator. J Pineal Res 36:171–176

    Article  CAS  PubMed  Google Scholar 

  10. Kilic E, Kilic U, Reiter RJ (2005) Tissue-plasminogen activator-induced ischemic brain injury is reversed by melatonin: role of iNOS and Akt. J Pineal Res 39:151–155

    Article  CAS  PubMed  Google Scholar 

  11. Yousuf S, Atif F, Ahmad M et al (2009) Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Res 1250:242–253

    Article  CAS  PubMed  Google Scholar 

  12. Zhang N, Komine-Kobayashi M, Tanaka R et al (2005) Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. Stroke 36:2220–2225

    Article  CAS  PubMed  Google Scholar 

  13. Longa EZ, Weinstein PR, Carlson S et al (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    CAS  PubMed  Google Scholar 

  14. Jollow DJ, Mitchell JR, Zampaghone N et al (1974) Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic intermediate. Pharmacology 11:161–169

    Article  Google Scholar 

  15. Utley HC, Bernhein F, Hochslein P (1967) Effects of sulfhydryl reagent on peroxidation in microsomes. Arch Biochem Biophys 260:521–531

    Google Scholar 

  16. Levine S (1960) Anoxic-ischemic encephalopathy in rats. Am J Pathol 36:1–17

    CAS  PubMed  Google Scholar 

  17. Mohandas J, Marshall JJ, Duggin GG et al (1984) Differential distribution of glutathione and glutathione related enzymes in rabbit kidneys: possible implication in analgesic neuropathy. Cancer Res 44:5086–5091

    CAS  PubMed  Google Scholar 

  18. Carlberg I, Mannerviek B (1975) Glutathione reductase levels in rat brain. J Biol Chem 250:5475–5480

    CAS  PubMed  Google Scholar 

  19. Habig WH, Pabst M, Jakoby WB (1986) Glutathione S-Transferase: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Google Scholar 

  20. Misko TP, Schilling RJ, Salvenuni D et al (1993) A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem 214(1):11–16

    Article  CAS  PubMed  Google Scholar 

  21. Nakayama H, Ginsberg MD, Dietrich WD (1988) (S)-Emopamil, 539 a novel calcium channel blocker and serotonin S2 antagonist, 540 markedly reduces infarct size following middle cerebral artery 541 occlusion in rat. Neurology 38:1667–1673

    CAS  PubMed  Google Scholar 

  22. Ahmad M, Salim S, Ahmad AS et al (2005) Ginkgo biloba affords dose-dependent protection against 6-OHDA induced Parkinsonism in rats: neurobehavioral, neurochemical and immunohistochemical evidences. J Neurochem 93:94–104

    Article  CAS  PubMed  Google Scholar 

  23. Lowry OH, Rosenbrough NJ, Farr AL et al (1951) Protein measurement, with folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  24. Laing RJ, Jakubowski J, Laing RW (1993) Middle cerebral artery occlusion without craniectomy in rats. Which method works best? Stroke 24(2):294–297

    CAS  PubMed  Google Scholar 

  25. Andrabi SA, Spina MG, Lorenz P et al (2004) Oxyresveratrol (trans-2, 3′, 4, 5′-tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia. Brain Res 1017(1–2):98–107

    Article  CAS  PubMed  Google Scholar 

  26. Saleem S, Ahmad M, Ahmad AS et al (2006) Effect of Saffron (Crocus sativus) on neurobehavioral and neurochemical changes in cerebral ischemia in rats. J Med Food Summer 9(2):246–253

    Article  Google Scholar 

  27. Peters O, Back T, Lindauer U et al (1998) Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18:196–205

    Article  CAS  PubMed  Google Scholar 

  28. Girotti AW (1985) Mechanism of lipid peroxidation. J Free Radic Biol Med 1:87–95

    Article  CAS  PubMed  Google Scholar 

  29. Pak HC (1996) Role of oxidants in ischemic brain damage. Stroke 27:1124–1129

    Google Scholar 

  30. Schwarting RK, Steiner H, Huston JP (1991) Asymmetries in thigmotactic scanning: evidence for a role of dopaminergic mechanisms. Psychopharmacology (Berl) 103:19–27

    Article  CAS  Google Scholar 

  31. Salim S, Ahmad M, Zafar KS et al (2003) Protective effect of Nardostachys jatamansi in rat cerebral ischemia. Pharmacol Biochem Behav 74(2):481–486

    Article  CAS  PubMed  Google Scholar 

  32. Yousuf S, Salim S, Ahmad M et al (2005) Protective effect of Khamira Abresham uood Mastagiwala against free radical induced damage in focal cerebral ischemia. J Ethnopharmacol 99:179–184

    Article  PubMed  Google Scholar 

  33. Klotz LO, Kröncke KD, Buchczyk DP et al (2003) Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J Nutr 133:1448–1451

    Google Scholar 

  34. Lehmann P, Rank P, Hallfeldt KL et al (2006) Dose-related influence of sodium selenite on apoptosis in human thyroid follicles in vitro induced by iodine, EGF, TGF-beta, and H2O2. Biol Trace Elem Res 112:119–130

    Article  CAS  PubMed  Google Scholar 

  35. Poeggler B, Reiter RJ, Tan DX et al (1993) Melatonin, hydroxyl radical mediated oxidative damage and aging: a hypothesis. J Pineal Res 14:151–168

    Article  Google Scholar 

  36. Poeggler B, Saarela S, Reiter RJ et al (1994) Melatonin—a highly potent hydroxyl radical scavenger and electron donor: new aspectnew aspecgt of oxidation cemiswtry of this indole assessed in vivo. Ann N Y Acad Sci 738:419–420

    Article  Google Scholar 

  37. Hardeland R, Balzer I, Poeggeler B et al (1995) On the primary functions of melatonin in evolution: mediation of photoperiodic signals in a unicell, photoxidation, and scavenging of free radicals. J Pineal Res 18:104–111

    Article  CAS  PubMed  Google Scholar 

  38. Pieri C, Marra M, Moroni F et al (1994) Melatonin a peroxyl radical scavenger more effective than vitamin E. Life Sci 55:271–276

    Article  Google Scholar 

  39. Scaiano JC (1995) Exploratory laser flash photolysis study of free radical reactions and magnetic field effect in melatonin chemistry. J Pineal Res 19:189–195

    Article  CAS  PubMed  Google Scholar 

  40. Antolin I, Rodriguez C, Sainiz RM et al (1996) Neurohormone melatonin prevents cell damage: effect on gene expression of antioxidant enzymes. FASEB J 10:882–890

    CAS  PubMed  Google Scholar 

  41. Pablos MI, Chaung JI, Ortiz GC et al (1997) Both melatonin and putative nuclear melatonin receptor agonist CGP 52608 stimulate glutathione peroxidase and glutathione reductase activities in mouse brain in vivo. Neuroendcrin Lett 18:49–58

    CAS  Google Scholar 

  42. Gao D, Zhang X, Jiang X et al (2006) Resveratrol reduces the elevated level of MMP-9 induced by cerebral ischemia-reperfusion in mice. Life Sci 78(22):2564–2570

    Article  CAS  PubMed  Google Scholar 

  43. Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Rev 25:335–358

    Article  CAS  PubMed  Google Scholar 

  44. Sinha K, Degaonkar MN, Jagannathan NR (2001) Effect of melatonin on ischemia reperfusion injury induced by middle cerebral artery occlusion in rats. Eur J Pharmacol 428:185–192

    Article  CAS  PubMed  Google Scholar 

  45. Al Nita D, Nita V, Spulber S et al (2001) Oxidative damage following cerebral ischemia depends on reperfusion—a biochemical study in rat. J Cell Mol Med 5:163–170

    Article  Google Scholar 

  46. Kiray M, Bagriyanik HA, Pekcetin C et al (2008) Protective effects of deprenyl in transient cerebral ischemia in rats. J Physiol 51(5):275–281

    CAS  Google Scholar 

  47. Imam SZ, Ali SF (2000) Selenium, an antioxidant, attenuates methamphetamine-induced dopaminergic toxicity and peroxynitrite generation. Brain Res 855(1):186–191

    Article  CAS  PubMed  Google Scholar 

  48. Baez S, Segura-Aguilar J, Widersten M et al (1997) Glutathione transferases catalyse the detoxication of oxidized metabolite (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J 324:5–8

    Google Scholar 

  49. Niizuma K, Yoshioka H, Chen H et al (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1:92–99

    Google Scholar 

  50. Iadecola C (1997) Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20:132–139

    Article  CAS  PubMed  Google Scholar 

  51. Ashwal S, Tone B, Tian HR et al (1998) Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke 29:1037–1047

    CAS  PubMed  Google Scholar 

  52. Bolanos JP, Almeida A (1999) Roles of nitric oxide in brain hypoxia-ischemia. Biochimica et Biophysica Acta (BBA)/Bioenergetics 22:415–436

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Department of Ayurveda, Yoga and Naturalpathy, Unani, Siddha and Homeopath (AYUSH), Ministry of Health and Family Welfare, Government of India, New Delhi for financial assistance. The authors wish to thank Mr. Dharamvir Singh for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhrul Islam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, A., Khan, M.M., Ishrat, T. et al. Synergistic Effect of Selenium and Melatonin on Neuroprotection in Cerebral Ischemia in Rats. Biol Trace Elem Res 139, 81–96 (2011). https://doi.org/10.1007/s12011-010-8643-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8643-z

Keywords

Navigation