Skip to main content
Log in

Chromium, Cadmium, and Lead Levels in Urine of Children with Autism and Typically Developing Controls

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Although potentially harmful effects of heavy metals are well known, limited numbers of studies exist regarding their relationship with autism. The aim of this study was to investigate urine levels of some heavy metals such as of chromium (Cr), cadmium (Cd), and lead (Pb) in children with autism and healthy subjects. Urine levels of Cr, Cd, and Pb were measured by atomic absorption spectrometry in 30 children with autism and compared with 20 healthy controls. Urine Cd and Pb levels were found as significantly decreased in children with autism compared to healthy subjects (p < 0.05). On the other hand, urine Cr levels were significantly higher in children with autism than healthy subjects (p < 0.05). This study suggested that autism may be associated with significant decrease in excretion rate of Cd and Pb and a significant increase excretion rate in the levels of Cr in the urine. These results have indicated that further studies are warranted for investigation of possible roles of heavy metals in autism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, DSM-IVTM, 4th edn. American Psychiatric Association, Washington DC

    Google Scholar 

  2. Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21(1):28–44

    Article  PubMed  Google Scholar 

  3. Valko M, Rhodes CJ, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40

    Article  CAS  PubMed  Google Scholar 

  4. Broadhurst CL, Domenico P (2006) Clinical studies on chromium picolinate supplementation in diabetes mellitus—a review. Diabetes Technol Ther 8(6):677–687

    Article  CAS  PubMed  Google Scholar 

  5. Upreti RK, Shrivastava R, Chaturvedi UC (2004) Gut microflora & toxic metals: chromium as a model. Indian J Med Res 119(2):49–59

    CAS  PubMed  Google Scholar 

  6. Iijima S, Matsumoto N, Lu CC (1983) Transfer of chromic chloride to embryonic mice and changes in the embryonic mouse neuroepithelium. Toxicology 26(3–4):257–265

    Article  CAS  PubMed  Google Scholar 

  7. Wecker L, Miller SB, Cochran SR et al (1985) Trace element concentrations in hair from autistic children. J Ment Defic Res 29(Pt 1):15–22

    PubMed  Google Scholar 

  8. Adams JB, Holloway CE, George F et al (2006) Analyses of toxic metals and essential minerals in the hair of Arizona children with autism and associated conditions, and their mothers. Biol Trace Elem Res 110(3):193–209

    Article  CAS  PubMed  Google Scholar 

  9. Bertin G, Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88(11):1549–1559

    Article  CAS  PubMed  Google Scholar 

  10. Yang PM, Chiu SJ, Lin KA et al (2004) Effect of cadmium on cell cycle progression in Chinese hamster ovary cells. Chem Biol Interact 149(2–3):125–136

    Article  CAS  PubMed  Google Scholar 

  11. Fang MZ, Mar W, Cho MH (2002) Cadmium affects genes involved in growth regulation during two-stage transformation of Balb/3T3 cells. Toxicology 177(2–3):253–265

    Article  CAS  PubMed  Google Scholar 

  12. Dong S, Shen HM, Ong CN (2001) Cadmium-induced apoptosis and phenotypic changes in mouse thymocytes. Mol Cell Biochem 222(1–2):11–20

    Article  CAS  PubMed  Google Scholar 

  13. Kern JK, Grannemann BD, Trivedi MH et al (2007) Sulfhydryl-reactive metals in autism. J Toxicol Environ Health A 70(8):715–721

    Article  CAS  PubMed  Google Scholar 

  14. Shearer TR, Larson K, Neuschwander J et al (1982) Minerals in the hair and nutrient intake of autistic children. J Autism Dev Disord 12(1):25–34

    Article  CAS  PubMed  Google Scholar 

  15. Drum DA (2009) Are toxic biometals destroying your children's future? Biometals (in press)

  16. Rana SV (2008) Metals and apoptosis: recent developments. J Trace Elem Med Biol 22(4):262–284

    Article  CAS  PubMed  Google Scholar 

  17. Fido A, Al-Saad S (2005) Toxic trace elements in the hair of children with autism. Autism 9(3):290–298

    Article  PubMed  Google Scholar 

  18. Yorbik Ö, Cöngöloğlu A, Dilaver B et al (2003) Investigation of hair head level in autistic children. Klinik Psikiyatri Dergisi (Turkish) 6(4):213–216

    Google Scholar 

  19. Adams JB, Romdalvik J, Ramanujam VM et al (2007) Mercury, lead, and zinc in baby teeth of children with autism versus controls. J Toxicol Environ Health A 70(12):1046–1051

    Article  CAS  PubMed  Google Scholar 

  20. Krug DA, Arick JR, Almond PJ (1993) Autism screening instrument for educational planning—ASIEP 2. Pro-ed Inc., Austin

    Google Scholar 

  21. Yilmaz-Irmak T, Tekinsav-Sutcu S, Aydin A et al (2007) Otizm davranış kontrol listesinin (ABC) geçerlik ve güvenirliğinin incelenmesi (An investigation of validity and reliability of autism behavior checklist, ABC). J Child Adolesc Ment Health (Turkish) 14(1):13–23

    Google Scholar 

  22. Holmes AS, Blaxill MF, Haley BE (2003) Reduced levels of mercury in first baby haircuts of autistic children. Int J Toxicol 22(4):277–285

    Article  CAS  PubMed  Google Scholar 

  23. Bradstreet J, Geier DA, Kartzinel JJ et al (2003) A case-control study of mercury burden in children with autism spectrum disorder. J Am Phys Surg 8:76–79

    Google Scholar 

  24. Soden SE, Lowry JA, Garrison CB et al (2007) 24-hour provoked urine excretion test for heavy metals in children with autism and typically developing controls, a pilot study. Clin Toxicol (Phila) 45(5):476–481

    CAS  Google Scholar 

  25. Yorbik O, Sayal A, Akay C et al (2002) Investigation of antioxidant enzymes in children with autistic disorder. Prostaglandins Leukot Essent Fatty Acids 67(5):341–343

    Article  CAS  PubMed  Google Scholar 

  26. Chauhan A, Chauhan V, Brown WT et al (2004) Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin—the antioxidant proteins. Life Sci 75(21):2539–2549

    Article  CAS  PubMed  Google Scholar 

  27. James SJ, Cutler P, Melnyk S et al (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80(6):1611–1617

    CAS  PubMed  Google Scholar 

  28. McGinnis WR (2004) Oxidative stress in autism. Altern Ther Health Med 10(6):22–36

    PubMed  Google Scholar 

  29. Ming X, Stein TP, Brimacombe M et al (2005) Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot Essent Fatty Acids 73(5):379–384

    Article  CAS  PubMed  Google Scholar 

  30. Yao Y, Walsh WJ, McGinnis WR et al (2006) Altered vascular phenotype in autism: correlation with oxidative stress. Arch Neurol 63(8):1161–1164

    Article  PubMed  Google Scholar 

  31. James SJ, Melnyk S, Fuchs G et al (2009) Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am J Clin Nutr 89(1):425–430

    Article  CAS  PubMed  Google Scholar 

  32. Geier DA, Geier MR (2006) A clinical and laboratory evaluation of methionine cycle-transsulfuration and androgen pathway markers in children with autistic disorders. Horm Res 66(4):182–188

    Article  CAS  PubMed  Google Scholar 

  33. Geier DA, Kern JK, Garver CR et al (2009) A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem Res 34(2):386–393

    Article  CAS  PubMed  Google Scholar 

  34. Vojdani A, Mumper E, Granpeesheh D et al (2008) Low natural killer cell cytotoxic activity in autism: the role of glutathione, IL-2 and IL-15. J Neuroimmunol 205(1–2):148–154

    Article  CAS  PubMed  Google Scholar 

  35. Baruthio F (1992) Toxic effects of chromium and its compounds. Biol Trace Elem Res 32:145–153

    Article  CAS  PubMed  Google Scholar 

  36. Bellinger DC (2008) Very low lead exposures and children's neurodevelopment. Curr Opin Pediatr 20(2):172–177

    Article  PubMed  Google Scholar 

  37. Bellinger DC (2007) Children's cognitive health: the influence of environmental chemical exposures. Altern Ther Health Med 13(2):S140–S144

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgür Yorbik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yorbik, Ö., Kurt, İ., Haşimi, A. et al. Chromium, Cadmium, and Lead Levels in Urine of Children with Autism and Typically Developing Controls. Biol Trace Elem Res 135, 10–15 (2010). https://doi.org/10.1007/s12011-009-8494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8494-7

Keywords

Navigation