Skip to main content
Log in

Effect of Cadmium on Cellular Viability in Two Species of Microalgae (Scenedesmus sp. and Dunaliella viridis)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We determined the effect of several concentrations of cadmium (0, 5, 10, and 20 μg/l) on cellular viability in the microalgae Scenedesmus sp. and Dunaliella viridis, by measuring growth at 0, 24, 48, 72, and 96 h and pigment production at 10 days. Algae were obtained from the Nonvascular Plant Laboratory collection, in the Facultad Experimental de Ciencias, Universidad del Zulia, Venezuela. Growth was measured by cellular counting, while pigment content was evaluated using conventional spectrophotometric techniques. Growth of both species decreased in the exposed cultures comparing with the control, but its behavior was similar, because in both control and exposed cultures, its was observed an adaptive phase in the first hours, as well as a growth phase after 72 h. Cadmium concentrations above 10 μg/l produced an adverse effect on pigment production, depending on the concentration and/or exhibition time. However, even though cadmium inhibited growth and pigment production, levels of both parameters indicated cellular viability, demonstrating the adaptability of the algae cultures when they were exposed to the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Huang H, Wu J. Y., & Wu J. H. (2007). Heavy metal monitoring using bivalved shellfish from Zhejiang Coastal water, East China Sea. Environ. Monit. Assess. 129, 315–320.

    Article  PubMed  CAS  Google Scholar 

  2. van Straalen N. M., Donker M. H., Vijver M. G., & van Gestel C. (2005). Bioavailability of contaminants estimated from uptake rates in soil invertebrates. Environ. Pollut. 136, 409–417.

    Article  PubMed  Google Scholar 

  3. Abbas Alkarkhi F. M., Norli I, & Easa A. M. (2008). Assessment of arsenic and heavy metal contents in cockles (Anadara granosa) using multivariate statistical techniques. J Hazard Mater. 150, 783–789.

    Article  PubMed  CAS  Google Scholar 

  4. O’Farrell I, Lombardo R, Pinto P, Loez C. (2002). The assessment of water quality in the Lower Lujan River (Buenos Aires, Argentina): phytoplankton and algal bioassays. Environ Pollut 1(20): 207–218.

    Article  Google Scholar 

  5. Pawlik-Skowronska B (2001). Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water; effects of some environmental factors. Aquat. Toxicol. 52(3–4):241–9.

    Article  PubMed  CAS  Google Scholar 

  6. Rangsayatorn N, Upatham E, Kruatrachue P, Pokethitiyook G, Lanza G. (2002). Phytoremediation potential of spirulina (Arthrospira) platensis: Biosorption and toxicity studies of cadmium. Environ. Pollut. 119:45–53.

    Article  CAS  Google Scholar 

  7. Romero Y, Lodeiros C, Esclapés M, Marín N, Guevara M, Morales E. (2002). Efecto tóxico del cadmio sobre microalgas aisladas del Nororiente de Venezuela. Interciencia. 27 (3): 104–109.

    Google Scholar 

  8. Terry P, Stone W (2002). Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere, 47(3): 249–255.

    Article  PubMed  CAS  Google Scholar 

  9. Peña J, Martinez F, Esparza F, Cañizares R. (2004). Heavy metals removal by the microalga Scenedesmus incrassatulus in continuous cultures. Bioresource Technology. 94 (2): 219–222.

    Article  Google Scholar 

  10. Phillips, D. J. H. (1977). The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments. A review. Environ. Pollut. 13, 281–317.

    Article  CAS  Google Scholar 

  11. Tripathi B.N, Mehta S.K., Anshu A and Gaur J.P. (2006). Oxidative stress in Scenedesmus sp. during short and long-term exposure to Cu2+ and Zn2+. Chemosphere 62 (4): 538–544.

    Article  PubMed  CAS  Google Scholar 

  12. Takagi M, Karseno Y. (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 101(3):223–226.

    Article  PubMed  CAS  Google Scholar 

  13. Chacon C, Andrade C, Cardenas C. (2004). Uso de Chlorella sp. y Scenedesmus sp. en la Remoción de Nitrógeno, Fósforo y DQO de Aguas Residuales Urbanas de Maracaibo, Venezuela. Bol. Centro Invest. Biol. 38 (2): 94–108.

    Google Scholar 

  14. Hashim M.A. and Chu K.H. (2004). Biosorption of cadmium by brown, green, and red seaweeds. Chem Eng J 97 (2–3): 249–255.

    Article  CAS  Google Scholar 

  15. Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A and Groneberg D. (2006). The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22–28

    Article  PubMed  Google Scholar 

  16. Occupational Safety & Health Administration (OSHA). (2005) Safety and health topics: Cadmium. OSHA, Washington, DC.

    Google Scholar 

  17. US Environmental Protection Agency (USEPA). (2001) Chronic toxicity summary. Cadmium and cadmium compounds. CAS Registry Number: 7449.

  18. Jarup L (2003). Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  19. Jin T, Nordberg M, Frech W, Dumont X, Bernard A, Ye TT, Kong Q, Wang Z, Li P, Lundstrom NG, Li Y, Nordberg GF. (2002). Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China (ChinaCad). Biometals 15 (4):397–410.

    Article  PubMed  CAS  Google Scholar 

  20. Barry R, Huet N, Macintosh Y (2000). Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water. Environ Health Perspect 108:731–735.

    Article  Google Scholar 

  21. Tien CJ. (2002). Biosorption of metal ions by freshwater algae with different surface characteristics. Process Biochem 38: 605–613

    Article  CAS  Google Scholar 

  22. Fazeli MR, Tofighi H, Samadi N, Jamalifar H. (2006). Effects of salinity on beta-carotene production by Dunaliella tertiolecta DCCBC26 isolated from the Urmia salt lake, north of Iran. Bioresour Technol. 97(18):2453–2456.

    PubMed  CAS  Google Scholar 

  23. Marcano L., Carruyo I., Montiel X., Morales C., Moreno P. (2007). Capacity of adaptation of two species of algae (Scenedesmus sp and Dunaliella viridis) to the stress induced by cadmium. Proceeding of 9th Inter-American congress of Electronic Microscopy. Cuzco-Perú. pp: 113–114.

  24. Wong C, Cheung R, Wong M. (1999). Toxicological assessment of coastal sediments in Hong Kong using a flagellate, Dunaliella tertiolecta. Environ Pollut 105: 175–183.

    Article  CAS  Google Scholar 

  25. Wellburn A. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol.144: 307–313.

    CAS  Google Scholar 

  26. Doshi H, Seth C, Ray A, Kothari IL. (2008). Bioaccumulation of heavy metals by green algae. Curr Microbiol. 56(3):246–55.

    Article  PubMed  CAS  Google Scholar 

  27. Gillis PL, Wood CM. (2008). Investigating a potential mechanism of Cd resistance in Chironomus riparius larvae using kinetic analysis of calcium and cadmium uptake Aquat Toxicol 89(3):180–187.

    Article  PubMed  CAS  Google Scholar 

  28. Lipskaia L and Lompré AM. (2004). Alteration in temporal kinetics of Ca2+ signaling and control of growth and proliferation. Biology Cell 96: 55–68.

    Article  CAS  Google Scholar 

  29. Sheppard J. R, Plagemann P. (2005). Cyclic AMP, membrane transport and cell division. I. Effects of various chemicals on cyclic amp levels and rate of transport of nucleosides, hypoxanthine and deoxyglucose in several lines of cultured cells. J Cell Physiol 85 (2): 163–172.

    Article  Google Scholar 

  30. Nikookar K, Moradshahi A, Hosseini L. (2005). Physiological responses of Dunaliella salina and Dunaliella tertiolecta to copper toxicity Biomol Eng 22 (4): 141–146.

    Article  PubMed  CAS  Google Scholar 

  31. Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán J, Moreno-Sánchez R. (2006). Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev. 25: 335–347

    Article  Google Scholar 

  32. Macfie S. and Welbourn P. (2000). The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reindhartii (Chlorophyceae). Arch. Environ. Contam. Toxicol 39 (4):413–9.

    Article  PubMed  CAS  Google Scholar 

  33. Vatamaniuk OK, Mari S, Lu Y, Rea P (2000). Mechanisms of heavy metal ion activation of phytochelatin (PC) synthase. J. Biol. Chem. 275: 31451–31459.

    Article  PubMed  CAS  Google Scholar 

  34. Picault N, Cazalé AC, Beyly A, Cuiné S, Carrier P, Luu D.T., Forestier C and Peltier G. (2006). Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation Biochimie. 88 (11): 1743–1750.

    Article  PubMed  CAS  Google Scholar 

  35. Tsuji N, Hirayanagi N, Okada M. (2002). Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem. Biophys. Res. Commun. 293 (1): 653–659.

    Article  PubMed  CAS  Google Scholar 

  36. Gimmler H, Schieder M, Kowalski M, Zimmermann U, Pick U. (2006) Dunaliella acidophila: algae with a positive zeta potential at its optimal pH for growth. Plant, Cell & Environment 14 (3):261–269

    Google Scholar 

  37. Pedrosa R, Chuei M, Converti A, Sato S, Monteiro J. (2008). Influence of ammonium chloride feeding time and light intensity on the cultivation of Spirulina (Arthrospira) platensis. Biotech. Bioeng. 100 (2): 297–305.

    Article  Google Scholar 

  38. Nada E, Abdallah B, Rhouma B, Rwina B, Imed M and Boukhris M. (2007). Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Phys Plant 29(1) 57–62.

    Article  CAS  Google Scholar 

  39. Mobin M and Khan N. (2007). Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J. Plant. Physiol. 164 (5, 3): 601–610.

    Article  PubMed  CAS  Google Scholar 

  40. Thangavel P, Long S, and Rakesh M. (2007). Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tiss Organ Cult. 88(2): 201–216.

    Article  CAS  Google Scholar 

  41. Khan N A, Singh S, and Nazar R. (2007). Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci 193 (6): 435–444.

    Article  CAS  Google Scholar 

  42. Perales-Vela H, González-Moreno S, Montes C, Cañizares R. (2007). Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae) Chemosphere. 67 (11): 2274–2281.

    Article  PubMed  CAS  Google Scholar 

  43. Khatun S, Babar M. A, Hahn E and Paek K. (2008). Copper toxicity in Withania somnifera: Growth and antioxidant enzymes responses of in vitro grown plants. Environ Exp Bot 64 (3): 279–285.

    Article  CAS  Google Scholar 

  44. Shaw. A. (1990). Heavy metal tolerance in plant. Chapter 8. CRC, Boca Raton, pp. 106–119.

    Google Scholar 

  45. Memon A, Aktoprakligül D, Zdemür A, VertiI A. (2001). Heavy metal accumulation and detoxification mechanisms in plants. Turk J Bot. 25: 111–121.

    Google Scholar 

  46. Memon A., and Schröder P. (2009). Accumulation mechanisms to phytoremediation. Environmental Science and Pollution Research. Published online: 6 December 2008. doi:10.1007/s11356-008-0079-z.

  47. Guo WJ, Meetam M, Goldsbrough P. (2008). Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 164(4):1697–1706.

    Article  Google Scholar 

  48. Marcano L, Carruyo I, Montiel X, Morales E, Moreno P. (2006). Determinación de la acumulación de cadmio en Scenedesmus sp. In: IX Congreso Latinoamericano de Botánica. Santo Domingo—República Dominicana.

  49. Carruyo I, Marcano Letty, Montiel X, Moreno P. (2006). Capacidad de acumulación de cadmio en Dunaliella viridis. In: IX Congreso Latinoamericano de Botánica. Santo Domingo—República Dominicana.

Download references

Acknowledgments

This work was financed by the Consejo de Desarrollo Científico y Humanístico of the Universidad del Zulia, Venezuela. We thank Clark Casler for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letty Beatriz C. Marcano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcano, L.B.C., Carruyo, I.M., Montiel, X.M. et al. Effect of Cadmium on Cellular Viability in Two Species of Microalgae (Scenedesmus sp. and Dunaliella viridis). Biol Trace Elem Res 130, 86–93 (2009). https://doi.org/10.1007/s12011-009-8316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8316-y

Keywords

Navigation