Skip to main content
Log in

Environmental and Kinetic Parameters for Cr(VI) Bioreduction by a Bacterial Monoculture Purified from Cr(VI)-Resistant Consortium

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Hexavalent chromium, Cr(VI), is toxic to living systems. Widespread contamination of water and soil by Cr(VI) present a serious public health problem. Chromium-resistant bacteria can reduce and detoxify Cr(VI). Twelve bacteria resistant to high concentrations of Cr(VI) were isolated from soil enrichment cultures. Environmental parameters and kinetic parameters of Cr(VI) bioreduction by one monoculture isolate, identified by 16S rRNA gene sequence as Bacillus sp. PB2, were studied. The optimal temperature for growth and Cr(VI) reduction was 35°C. The isolate grew luxuriantly and substantially reduced Cr(VI) at initial pH 7.5 to 9. Maximal Cr(VI) bioreduction occurred at initial pH 8.0. Substantial Cr(VI) bioreduction was observed in salt media, but removal efficiency was inversely related to salt concentration (1–9%). Michaelis–Menten hyperbolic equation and the Lineweaver–Burk double reciprocal plot were comparatively employed to determine the k m and V max of Cr(VI) bioreduction. A k m of 82.5 μg mL−1 and V max of 7.78 μg mL−1 h−1 were calculated by nonlinear regression analysis of the hyperbola curve. Linear regression analysis of the double reciprocal plot revealed k m and V max of 80.9 μg mL−1 and 10.6 μg mL−1 h−1, respectively. Time course studies displayed about 90% reduction of Cr(VI) at an initial concentration of 8,000 μg L−1 in 8 h, with an estimated t 1/2 of 4 h. Data from time course analysis of the rate of Cr(VI) bioreduction fitted zero-order model, and the kinetic constant k was calculated to be 840 μg L−1 h−1. The monoculture isolate, Bacillus sp. PB2, strongly reduces Cr(VI) and could be used for bioremediation of Cr(VI)-contaminated aquatic and terrestrial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thacker U, Parikh R, Shouche Y et al (2006) Hexavalent chromium reduction by Providencia sp. Process Biochem 41:1332–1337

    Article  CAS  Google Scholar 

  2. McLean J, Beveridge TJ (2001) Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  PubMed  CAS  Google Scholar 

  3. Michel C, Brugma M, Aubert C et al (2001) Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Appl Microbiol Biotechnol 55:95–100

    Article  PubMed  CAS  Google Scholar 

  4. Losi ME, Frankenberger WT (1994) Chromium-resistant microorganisms isolated from evaporation ponds of a metal processing plant. Water Air Soil Pollut 74:405–413

    CAS  Google Scholar 

  5. Iyer A, Mody K, Jha B (2004) Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Mar Pollut Bull 49:974–977

    Article  PubMed  CAS  Google Scholar 

  6. Dermou E, Velissariou A, Xeonos D et al (2005) Biological chromium (VI) reduction using a trickling filter. J Hazard Mater B126:78–85

    Article  CAS  Google Scholar 

  7. Krishna KR, Philip L (2005) Bioremediation of Cr(VI) in contaminated soils. J Hazard Mater B121:109–117

    Article  CAS  Google Scholar 

  8. Laxman RS, More S (2002) Reduction of hexavalent chromium by Streptomyces griseus. Miner Eng 15:831–837

    Article  CAS  Google Scholar 

  9. Okeke BC, Frankenberger WT (2003) Biodegradation of methyl tertiary butyl ether (MTBE) by a bacterial enrichment consortia and its monoculture isolates. Microbiol Res 158:99–106

    Article  PubMed  CAS  Google Scholar 

  10. Losi ME, Amrhein C, Frankenberger WT (1994a) Environmental biochemistry of chromium. Rev Environ Contam Toxicol 36:91–121

    Google Scholar 

  11. Camargo FAO, Bento FM, Okeke BC, Frankenberger WT (2004) Hexavalent chromium reduction by an actinomycete, Arthrobacter crystallopoietes ES 32. Biol Trace Elem Res 94:179–191

    Google Scholar 

  12. Wang P, Mori T, Toda K, Ohtake H (1990) Membrane-associated chromate reductase activity from Enterobacter cloacae. J Bacteriol 172:1670–1672

    PubMed  CAS  Google Scholar 

  13. Clark DP (1994) Chromate reductase activity of Enterobacter aerogenes is induced by nitrite. FEMS Microbiol Lett 122:233–238

    Article  PubMed  CAS  Google Scholar 

  14. Das S, Chandra AL (1990) Chromate reduction in Streptomyces. Experientia 46:731–733

    Article  PubMed  CAS  Google Scholar 

  15. Gvozdyak PI, Mogilevich NF, Ryl-skii AF et al (1987) Reduction of hexavalent chromium by collection of strains of bacteria. Microbiologia 55:770–773

    Google Scholar 

  16. Lovely DR, Phillips EJP (1994) Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol 60:726–728

    Google Scholar 

  17. Guha HK, Jayachandran K, Maurrasse F (2001) Kinetics of chromium (VI) reduction by a type strain Shewanella alga under different growth conditions. Environ Pollut 115:209–218

    Article  PubMed  CAS  Google Scholar 

  18. Campos J, Martinez-Pacheco M, Cervantes C (1995) Hexavalent-chromium reduction by a chromate-resistant Bacillus sp. strain. Antonie Van Leeuwenhoek 68:203–208

    Article  PubMed  CAS  Google Scholar 

  19. Basu M, Bhattacharya S, Paul AK (1997) Isolation and characterization of chromium-resistant bacteria from tannery effluents. Bull Environ Contam Toxicol 58:535–542

    Article  PubMed  CAS  Google Scholar 

  20. Camargo FAO, Bento FM, Okeke BC, Frankenberger WT (2003) Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J Environ Qual 32:1228–1233

    Article  PubMed  CAS  Google Scholar 

  21. Camargo FAO, Okeke BC, Bento FM, Frankenberger WT (2004) Hexavalent chromium reduction by immobilized cells and cell-free extract of Bacillus sp. ES 29. Bioremediat J 8:23–30

    Article  CAS  Google Scholar 

  22. Cheung KH, Gu JD (2003) Reduction of chromate (CrO4 2) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere 52:1523–1529

    Article  PubMed  CAS  Google Scholar 

  23. Arıca MY, Bayramoglu G (2005) Cr(VI) biosorption from aqueous solutions using free and immobilized biomass of Lentinus sajor-caju: preparation and kinetic characterization. Colloids Surf A 253:203–211

    Article  CAS  Google Scholar 

  24. Bayramoglu G, Celik G, Yalcin E et al (2005) Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: evaluation of their Cr6+ removal efficiencies from aqueous medium. J Hazard Mater B119:219–229

    Article  CAS  Google Scholar 

  25. Okeke BC, Smith JE, Paterson A et al (1995) Influence of environmental parameters on pentachlorophenol biotransformation in soil by Lentinula edodes and Phanerochaete chrysosporium. Appl Microbiol Biotechnol 45:263–266

    Article  Google Scholar 

  26. Lane D (1991) 16S/23S sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York

    Google Scholar 

  27. Bartlet RJ, James BR (1996) Chromium. In: Sparks DL (ed) Methods of soil analysis, chemical methods, part 3. ASA/SSSA, Madison, pp 683–701

    Google Scholar 

  28. Mathews CK, Van Holde KE, Ahern KG (1999) Biochemistry, 3rd edn. Benjamin-Cummings, San Francisco

    Google Scholar 

  29. Thacker U, Parikh R, Shouche Y et al (2007) Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. Bioresour Technol 98:1541–1547

    Article  PubMed  CAS  Google Scholar 

  30. Badar U, Ahmed N, Beswick AJ et al (2000) Reduction of chromate by microorganisms isolated from metal contaminated sites in Karachi Pakistan. Biotechnol Lett 22:829–836

    Article  CAS  Google Scholar 

  31. Farrell SO, Ranallo RT (2000) Experiments in biochemistry, a hands-on approach. Saunders, Philadelphia

    Google Scholar 

  32. Cummings DE, Fendorf S, Singh N et al (2007) Reduction of Cr(VI) under acidic conditions by the facultative Fe(lll)-reducing bacterium Acidiphilium cryptum. Environ Sci Technol 41:146–152

    Article  PubMed  CAS  Google Scholar 

  33. Branco R, Alpoim MC, Morais PV (2004) Ochrobactrum tritici strain 5bvl1—characterization of a Cr(VI)-resistant and Cr(VI)-reducing strain. Can J Microbiol 50:697–703

    Article  PubMed  CAS  Google Scholar 

  34. Kakkar T, Boxenbaum H, Mayersohn M (1999) Estimation of K i in a competitive enzyme-inhibition model: comparisons among three methods of data analysis. Drug Metab Dispos 27:756–762

    PubMed  CAS  Google Scholar 

  35. Oh YS, Choi SC (1997) Reduction of hexavalent chromium by Pseudomonas aeruginosa HP014. J Microbiol 35:25–29

    CAS  Google Scholar 

  36. Fendorf S, Wielinga BW, Hansel CM (2000) Chromium transformations in natural environments: the role of biological and abiological processes in chromium(VI) reduction. Int Geol Rev 2:691–701

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a faculty and student research grant in aid from Auburn University Montgomery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedict C. Okeke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okeke, B.C., Laymon, J., Crenshaw, S. et al. Environmental and Kinetic Parameters for Cr(VI) Bioreduction by a Bacterial Monoculture Purified from Cr(VI)-Resistant Consortium. Biol Trace Elem Res 123, 229–241 (2008). https://doi.org/10.1007/s12011-008-8098-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8098-7

Keywords

Navigation