Skip to main content
Log in

Mineral Factors Controlling Essential Hypertension—a Study in the Chandigarh, India Population

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Essential hypertension (EH) is a major public health problem world over and in India. Recent data on EH in the population of Chandigarh (Union Territory and capital of Punjab and Haryana States of India) revealed that the prevalence of EH has become double in the last 30 years in the residents of Chandigarh (26.9 to 45.80% in the year 1968 and 2002). Zinc (Zn), copper (Cu), magnesium (Mg), and manganese (Mn) in the serum are considered important in maintaining the human hypertension. The high Zn intake was considered to increase the blood pressure (BP) and to affect the other mineral status in the body. Recent survey on the trace metal status of different vegetables in the State of Punjab around Chandigarh (India) revealed that Zn level is significantly higher (40 mg/kg or more in above ground vegetables and 120 mg/kg or above in underground vegetables) in underground water-irrigated vegetables, but the levels of Cu and Mg are within prescribed limit. The present study was conducted on Chandigarh population to evaluate the levels of Zn, Cu, Mg, and Mn in the blood and urine of normotensive (NT) control and hypertensive (HT) subjects matched with number, age and sex. Atomic absorption spectrophotometer studies revaluated that the levels of serum Zn, Mg, and Mn were significantly higher (p < 0.001), but the level of Cu was low in the HT subjects (BP = 160/93) compared to NT control (BP = 140/83). Higher levels of urinary Zn, Cu, Mg, and Mn were observed in the HT subject vs NT control (p < 0.001). Positive correlations were evaluated between the levels of serum Zn, Mg, and Mn vs systolic and diastolic pressures (DP and SP), respectively (r = 0.928, 0.863, 0.876, 0.808, 0.404, 0.326, p < 0.01), but negative and positive nonsignificant correlations between the serum Cu with SP and DP were recorded (r = −0.032, r = 0.024). Positive correlations were also evaluated between urinary levels of Zn, Cu, Mg, and Mn vs SP and DP (r = 0.718, 0.657, 0.750, 0.681, 0.630, 0.578, 0.516, 0.461, p < 0.01). Prevalence of essential hypertension may be due to higher Zn level in the food chain that makes the individuals vulnerable to other diseases over the time related to essential hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gupta R, Al-Odat NA, Gupta VP (1996) Hypertension epidemiology in India: meta-analysis of 50 years prevalence rates and blood pressure trends. J Hum Hypertens 10:465–472

    PubMed  CAS  Google Scholar 

  2. Fauci SA, Baunwald E, Isselbacher KJ (1998) Harrison’s principles of internal medicine, 14st edn. Academic, New York

    Google Scholar 

  3. Edward JR, Giffard RW, Aldermand MD (1993) The fifth report of the Joint National Committee on detection, evaluation and treatment of high blood pressure (JNCV). Arch Intern Med 153:154–183

    Article  Google Scholar 

  4. Shepherd JT (1990) Increased systemic vascular resistance and primary hypertension: the expanding complexity. J Hypertens 8(7):S15–S27

    CAS  Google Scholar 

  5. Sarvotham SG, Berry JN (1968) Prevalence of coronary heart disease in an urban population in Northern India. Circulation 37:939–942

    PubMed  CAS  Google Scholar 

  6. Kumar R, Singh MC, Ahlawat SK, Thakur JS, Srivastava A, Sharma MK, Malhotra P, Bali HK, Kumari S (2006) Urbanization and coronary heart disease: a study of urban–rural differences in Northern India. Indian Heart J 58:126–130

    PubMed  Google Scholar 

  7. Ahlawat SK, Singh MMC, Kumar R, Kumari S, Sharma BK (2002) Time trends in the prevalence of hypertension and associated risk factors in Chandigarh. J Indian Med Assoc 10:547–555

    Google Scholar 

  8. Sidhu S, Kamal N, Kumari K (2002) Incidence of hypertension among Punjabi population. In: Bhasin MK, Malik SK (eds) The science of man in service of man. University of Delhi, Delhi

    Google Scholar 

  9. Sidhu S, Kumari K, Prabhjot P (2005) Socio-demographic variables of hypertension among adult Punjabi females. J Hum Ecol 17(3):211–215

    Google Scholar 

  10. Gupta R, Gupta VP, Sarma M, Bhatnagar S, Thanvi I, Sharma V (2002) Prevalence of coronary heart disease and coronary risk factors in an urban population, Jaipur Heart Watch-2. Indian Heart J 54:59–66

    PubMed  Google Scholar 

  11. Joseph A, Kutty VR, Soman CR (2000) High risk for coronary disease in Thiruvanthapuram city: a study of serum lipids and other factors. Indian Heart J 52:29–35

    PubMed  CAS  Google Scholar 

  12. Banerji M, Kusma YS, Das PK (2003) Prevalence of hypertension among an urban population of Bhubaneswar city, Orissa, India. J Hum Ecol 14:377–381

    Google Scholar 

  13. Loyke HF (1991) Copper and zinc in experimental hypertension. Biol Trace Elem Res 29(1):45–49

    Article  PubMed  CAS  Google Scholar 

  14. Liu WM, Zhu ZG, Leng HX (2004) Analysis of the contents of K, Na, Ca, Mg, Zn, Cu, Fe and Mn in serum of middle and old-aged hypertensive patients. Guang Pu Xue Yu Guang Pu Fen Xi 24(3):360–362

    PubMed  CAS  Google Scholar 

  15. Hajjar I, Kotchen T (2003) Regional variations of blood pressure in the United States are associated with regional variations in dietary intakes: the NHANES-III data. J Nutr 133:211–214

    PubMed  CAS  Google Scholar 

  16. Fridovich I, Freeman B (1986) Antioxidant defense in the lung. Annu Rev Physiol 48:693–702

    Article  PubMed  CAS  Google Scholar 

  17. Marklund SL, Holme E, Hellner L (1982) Superoxide dismutase in extracellular fluids. Clin Chim Acta 126:41–51

    Article  PubMed  CAS  Google Scholar 

  18. Russo C, Olivievi O, Girelli D, Faccini G, Zenari M, Lombardi S, Corrocher R (1998) Antioxidant status and lipid peroxidation in patients with essential hypertension. J Hypertens 16(9):1267–1271

    Article  PubMed  CAS  Google Scholar 

  19. McIntyre M, Bohr DF, Dominiczak AF (1999) Endothelial function in hypertension. Hypertension 34:539–545

    PubMed  CAS  Google Scholar 

  20. Ma J, Betts NM (2000) Zinc and copper intakes and their major food sources for older adults in the 1994–96 continuing Survey of food intakes by individuals (CSF II). J Nutr 130:2838–2843

    PubMed  CAS  Google Scholar 

  21. Altura BT, Altura BM (1987) Cardiovascular actions of magnesium. Magnesium Bull 9:6–21

    CAS  Google Scholar 

  22. Yanagisawa H, Sato M, Nodera M, Wada O (2004) Excessive Zinc intake elevates systemic blood pressure levels in normotensive rats-potential role of superoxide-induced oxidative stress. J Hypertens 22(3):543–550

    Article  PubMed  CAS  Google Scholar 

  23. Klevay LM (1987) Hypertension in rats due to copper deficiency. Nutr Rep Int 35:999–1005

    CAS  Google Scholar 

  24. Sandstead HH (1995) Requirements and toxicity of essential trace elements, illustrated by zinc and copper. Am J Clin Nutr 61(3):621S–624S

    PubMed  CAS  Google Scholar 

  25. He BP, Li DF, Ma JW, Chen J, Liu XY, Zhang XR, Xu JM (2004) Determination of trace copper and zinc in hypertension complicated with hyperlipemia by atomic absorption spectrophotometry. Guang Pu Xue Yu Guang Pu Fen Xi 24(6):741–743

    PubMed  CAS  Google Scholar 

  26. Tang YR, Zhang SQ, Xiong Y, Zhao Y, Fu H, Zhnag HP, Xiong KM (2003) Studies of five microelements contents in human serum, hair, and fingernails correlated with aged hypertension and coronary heart disease. Biol Trace Elem Res 92(2):97–104

    Article  PubMed  CAS  Google Scholar 

  27. Vivoli G, Bergomi M, Roverti S, Pinotiti M, Caselgrands E (1995) Zinc, copper and zinc-or copper-dependent enzymes in human hypertension. Biol Trace Elem Res 49:97–103

    Article  PubMed  CAS  Google Scholar 

  28. Ram B, Garg SP, Matharu SS (2005) Effect of contaminants in wastewater on soil and vegetables—a case study. Panjab Pollution Control Board, Panjab

    Google Scholar 

  29. Bakhle Y, Reynard A (1971) Characteristics of the angiotensin I converting enzyme from dog lung. Nature New Biol 229:187–189

    Article  PubMed  CAS  Google Scholar 

  30. Ekmekci OB, Donma O, Tunckale A (2003) Angiotensin-converting enzyme and metals in untreated essential hypertension. Boil Trace Elem Res 95:203–110

    Article  CAS  Google Scholar 

  31. Ripa S, Ripa R (1994) Zinc and arterial pressure. Minerva Med 85(9):455–459 (Abstract)

    PubMed  CAS  Google Scholar 

  32. Gekle M, Golenhofen N, Oberleithner H, Silbernagl S (1996) Rapid activation of Na+/H+ exchange by aldosterone in renal epithelial cells requires Ca+2 and stimulation of a plasma membrane proton conductance. Proc Natl Acad Sci USA 93:10500–10504

    Article  PubMed  CAS  Google Scholar 

  33. Gekle M, Silbernagl S, Obserleithner H (1997) The mineralocorticoid aldosterone activates a proton conductance in cultured kidney cells. Am J Physiol Cell Physiol 273(42):C1673–C1678

    CAS  Google Scholar 

  34. Anonymous (2005) Trace elements modify the activity of sodium transporting system in erythrocyte membrane in patients with essential hypertension—preliminary study. Nephrol Dial Transplant 20(2):469–471 (letter)

    Article  Google Scholar 

  35. Rude R, Mannoogian C, Ehrlich L (1989) Mechanisms of blood pressure regulation by magnesium in man. Magnesium 8:266–273

    PubMed  CAS  Google Scholar 

  36. Satio K, Hattori K, Omatsu T (1988) Effects of oral magnesium on blood pressure and red cell sodium transport in patients receiving long-term thiazide diuretics for hypertension. Am J Hypertens 1:71S–74S

    Google Scholar 

  37. Loyke HF (2002) Effect of elements in human blood pressure control. Biol Trace Elem Res 85:193–209

    Article  PubMed  CAS  Google Scholar 

  38. Davydenko NV, Smirnova IP, Kvasha EA, Gorbas IM, Koblians KAV (1995) Interrelationship between dietary intake of minerals and prevalence of hypertension. Vopr Pitan 6:17–19

    PubMed  Google Scholar 

  39. Sagar S, Kallo IJ, Kaul N, Ganguly NK, Sharma BK (1992) Oxygen free radicals in essential hypertension. Mol Cell Biochem 111:103–108

    Article  PubMed  CAS  Google Scholar 

  40. Rubanyi GM, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivation endothelium-derived relaxing factor. Am J Physiol 250:H822–H827

    PubMed  CAS  Google Scholar 

  41. Beckman JS, Chen J, Ischiropoulos H, Crow JP (1994) Oxidative chemistry of peroxynitrite. In: Packer L (ed) Methods of enzymology. Academic, San Diego, CA, pp 229–240

    Google Scholar 

  42. Auch-Schwelk W, Katusic ZS, Vanhoutte PM (1989) Contractions to oxygen-derived free radicals are augmented in aorta of the spontaneously hypertensive rat. Hypertension 13:859–864

    PubMed  CAS  Google Scholar 

  43. Cosentino F, Sill JC, Katusic ZS (1994) Role of superoxide anions in the mediation of endothelium-dependent concentrations. Hypertension 23:229–235

    PubMed  CAS  Google Scholar 

  44. Vallance P, Collier J, Moncada S (1989) Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 2:997–1000

    Article  PubMed  CAS  Google Scholar 

  45. Angus JA, Dyke AC, Jennings GL, Korner PI, Sudhir K, Ward JE, Wrights CE (1992) Release of endothelium-derived relaxing factor from resistance arteries in hypertension. Kidney Int Suppl 37:S73–S78

    PubMed  CAS  Google Scholar 

  46. Salom MG, Lahera V, Miranda GF, Romero JC (1992) Blockage of pressure natriuresis induced by inhibition of renal synthesis of nitric oxide in dogs. Am J Physiol 262:F718–F722

    PubMed  CAS  Google Scholar 

  47. McIntyre M, Hamilton CA, Rees DD, Reid JL, Dominizak AF (1997) Sex difference in the abundance of endothelial nitric oxide in a model of genetic hypertension. Hypertension 30:1517–1524

    PubMed  CAS  Google Scholar 

  48. Redon J, Oliva MR, Tormas C, Giner V, Chaves J, Iradi A, Saez GT (2003) Antioxidant activities and oxidative stress by products in human hypertension. Hypertension 41:1096–1101

    Article  PubMed  CAS  Google Scholar 

  49. Paik HY, Joung H, Lee JY, Lee HK, King JC, Keen CL (1999) Serum extracellular superoxide dismutase activity as an indicator of Zinc status in humans. Biol Trace Elem Res 69(1):45–57

    PubMed  CAS  Google Scholar 

  50. Yamada H, Yamada Y, Adachi T, Goto H, Omasawara N, Futenma A, Gitano M, Miyai H, Fukatsu A, Hirano K, Kakumu S (1997) Polymorphism of extracellular superoxide (EC-SOD) gene: relation to the mutation responsible for high EC-SOD level in serum. Jpn J Hum Genet 42:353–356

    PubMed  CAS  Google Scholar 

  51. Adachi T, Wang XL (1998) Association of extracellular superoxide dismutase phenotype with the endothelial constitutive nitric oxide synthease polymorphism. FEBS Lett 433:166–168

    Article  PubMed  CAS  Google Scholar 

  52. Marklund SL, Nilsson P, Israelsson K, Schampi I, Peltonen M, Asplund K (1997) Two variants of extracellular-superoxide dismutase: relationship to cardiovascular risk factors in and unselected middle-aged population. J Intern Med 242:5–14

    Article  PubMed  CAS  Google Scholar 

  53. Baudin B (2002) New aspects on angiotensin-converting enzyme: from gene to disease. Clin Chem Lab Med 40(3):256–265

    Article  PubMed  CAS  Google Scholar 

  54. Turner AJ, Hooper NM (2002) The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci 23(4):177–183

    Article  PubMed  CAS  Google Scholar 

  55. Corvol P, Michaud A, Soubrier F, Williams TA (1995) Recent advances in knowledge of the structure and function of the angiotensin–converting enzyme. J Hypertens 13(3):3–10

    Article  Google Scholar 

  56. Semplicini A, Canessa M, Mozzato MG (1989) Red blood cell Na+/H and Li+/Na+ exchanges in patients with essential hypertension. Am J Hypertens 2:903–908

    PubMed  CAS  Google Scholar 

  57. Bober J, Kdzierska K, Kwiatkowska E (2002) The erythrocyte sodium-proton exchanges activity in patients with primary hypertension. Pol Arch Med Wew 1:619–624

    Google Scholar 

  58. Zicha J (1993) Red cell ion transport abnormalities in experimental hypertension. Fundam Clin Pharmacol 7:129–141

    Article  PubMed  CAS  Google Scholar 

  59. Avkiran M (2001) Protection of the ischemic myocardium by Na+/H exchange inhibitors: potential mechanisms of action. Basic Res Cardiol 96:306–311

    Article  PubMed  CAS  Google Scholar 

  60. Tubek S (2001) Increased absorption of zinc from alimentary tract in primary arterial hypertension. Biol Trace Elem Res 83(1):31–38

    Article  PubMed  CAS  Google Scholar 

  61. Lopez C, Occon DC, Mengo MS, Frasquet M, Derarmino VA (1991) Study of zinc and copper serum levels in dislipemias. Therapie 46(1):17–20

    PubMed  CAS  Google Scholar 

  62. Lee DY, Prasad AS, Hydrick-Adair C, Brewer G, Johnson PE (1993) Homeostasis of Zinc in marginal human zinc deficiency: role of absorption and endogenous excretion of zinc. J Lab Clin Med 122:549–556

    PubMed  CAS  Google Scholar 

  63. Allen GD, Klevay LM (1994) Copper: an antioxidant nutrient for cardiovascular health. Curr Opin Lipidol 5(1):220–208

    Article  Google Scholar 

  64. Taneja SK, Mandal R, Girhotra S (2006) Long term excessive Zn-supplementation promotes metabolic syndrome-X in Wistar rats fed sucrose and fat rich semi synthetic diet. Indian J Exp Biol 44:705–718

    PubMed  CAS  Google Scholar 

  65. Vivoli G, Borella P, Bergomi M, Fantuzzi G (1987) Zinc and copper levels in serum, urine, and hair of humans in relation to blood pressure. Sci Total Environ 66:55–64

    Article  PubMed  CAS  Google Scholar 

  66. Resnick L, Nicholson J, Laragh J (1985) Calcium metabolism and the rennin-aldosterone system in essential hypertension. J Cardiovasc Phamacol 7(6):S187–S193

    Article  Google Scholar 

  67. Lim R, Herzog W (1998) Magnesium for cardiac patients. Contemp Intern Med 10:6–9

    Google Scholar 

  68. Stevenson RN, Keywood C, Amadi A, Davies DJ (1991) Angiotensin converting enzyme inhibitors and conservation in patients with congestive heart failure. Br Heart J 66:19–21

    Article  PubMed  CAS  Google Scholar 

  69. Fujita T, Ito Y, Ando K, Noda H, Ogata E (1990) Attenuated vasodilator responses to Mg2+ in young patients with borderline hypertension. Circulation 82:384–393

    PubMed  CAS  Google Scholar 

  70. Swaminathan R (2003) Magnesium metabolism and its disorders. Clin Biochem Rev 24:47–66

    PubMed  CAS  Google Scholar 

  71. Gottlieb SS, Fisher ML, Pressel MD (1993) Effects of intravenous magnesium sulfate on arrhythmias in patients with congestive heart failure. Am Heart J 125:1646–1650

    Article  Google Scholar 

  72. Swami HM, Bhatia V, Gupta AK, Bhatia SPS (2005) An Epidemiological study of Obesity among elderly in Chandigarh. Indian J Commun Med 30:1–8

    Google Scholar 

  73. Malhotra P, Kumari S, Kumar R, Jain S, Sharma BK (1999) Prevalence and determinants of hypertension in an un-industrialized rural population of North India. J Hum Hypertens 13:467–472

    Article  PubMed  CAS  Google Scholar 

  74. Taneja SK, Mahajan M, Arya P (1996) Excess bioavailability of zinc may cause obesity in humans. Experientia 52:31–33

    Article  PubMed  CAS  Google Scholar 

  75. Taneja SK, Mahajan M, Gupta S, Singh KP (1998) Assessment of copper and zinc status of hair and urine of young women descendant of NIDDM parents. Biol Trace Elem Res 62:255–264

    PubMed  CAS  Google Scholar 

  76. Census of India (2001) Data from the 2001 census, including cities, villages and towns. Office of the Registrar General, New Delhi, India

Download references

Acknowledgements

Thanks are due to Prof. T. Gill for the laboratory facilities. The financial assistance of Panjab University, Chandigarh, to R. Mandal is gratefully acknowledged. Thanks are also due to Dr. H.C. Gupta and Mr. K.L. Kapur (Tarun Clinic, Sector-46C, Chandigarh) for providing the samples and the Department of Internal Medicine and Community Medicine, Post graduate Institute of Medical Education and Research (PGI), Chandigarh, India (2007), for their recent finding on essential hypertension on the Chandigarh population.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Kumar Taneja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taneja, S.K., Mandal, R. Mineral Factors Controlling Essential Hypertension—a Study in the Chandigarh, India Population. Biol Trace Elem Res 120, 61–73 (2007). https://doi.org/10.1007/s12011-007-8013-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8013-7

Keywords

Navigation