Skip to main content

Advertisement

Log in

Paracrine Factors Released from Tonsil-Derived Mesenchymal Stem Cells Inhibit Proliferation of Hematological Cancer Cells Under Hyperthermia in Co-culture Model

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are promising biological therapeutic candidates in cancer treatment. As a source of MSCs, palatine tonsil tissue is one of the secondary lymphoid organs that form an essential part of the immune system, and the relation between the secondary lymphoid organs and cancer progression leads us to investigate the effect of tonsil-derived MSCs (T-MSC) on cancer treatment. We aimed to determine the anti-tumoral effects of T-MSCs cultured at the febrile temperature (40 °C) on hematological cancer cell lines. The co-culture of cancer cells with T-MSCs was carried out under fever and normal culture conditions, and then the cell viability was determined by cell counting. In addition, apoptosis rate and cell cycle arrest were determined by flow cytometry. We confirmed the apoptotic effect of T-MSC co-culture at the transcriptional level by using real-time polymerase chain reaction (RT-PCR). We found that co-culture of cancer cells with T-MSCs significantly decreased the viable cell number under the febrile and normal culture conditions. Besides, the T-MSC co-culture induced apoptosis on K562 and MOLT-4 cells and induced the cell cycle arrest at the G2/M phase on MOLT-4 cells. The apoptotic effect of T-MSC co-culture under febrile stimulation was confirmed at the transcriptional level. Our study has highlighted the anti-tumoral effect of the cellular interaction between the T-MSCs and human hematological cancer cells during in vitro co-culture under hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data are available in the article or available from the authors upon request.

References

  1. Bispo, J. A. B., Pinheiro, P. S., & Kobetz, E. K. (2020). Epidemiology and etiology of leukemia and lymphoma. Cold Spring Harbor Perspectives in Medicine, 10(6), a034819.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang, C.-L., Huang, T., Wu, B.-L., He, W.-X., & Liu, D. (2017). Stem cells in cancer therapy: Opportunities and challenges. Oncotarget, 8(43), 75756.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pittenger, M. F., Discher, D. E., Péault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regenerative Medicine, 4(1), 1–15.

    Article  CAS  Google Scholar 

  4. Christodoulou, I., Goulielmaki, M., Devetzi, M., Panagiotidis, M., Koliakos, G., & Zoumpourlis, V. (2018). Mesenchymal stem cells in preclinical cancer cytotherapy: A systematic review. Stem Cell Research & Therapy, 9(1), 1–38.

    Article  Google Scholar 

  5. Hmadcha, A., Martin-Montalvo, A., Gauthier, B. R., Soria, B., & Capilla-Gonzalez, V. (2020). Therapeutic potential of mesenchymal stem cells for cancer therapy. Frontiers in Bioengineering and Biotechnology, 8, 43.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li, T., Zhang, C., Ding, Y., Zhai, W., Liu, K., Bu, F., et al. (2015). Umbilical cord-derived mesenchymal stem cells promote proliferation and migration in MCF-7 and MDA-MB-231 breast cancer cells through activation of the ERK pathway. Oncology Reports, 34(3), 1469–1477.

    Article  CAS  PubMed  Google Scholar 

  7. Brenner, A. K., Nepstad, I., & Bruserud, Ø. (2017). Mesenchymal stem cells support survival and proliferation of primary human acute myeloid leukemia cells through heterogeneous molecular mechanisms. Frontiers in Immunology, 8, 106.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu, X.-B., Liu, Y., Wang, G.-H., Xu, X., Cai, Y., Wang, H.-Y., et al. (2016). Mesenchymal stem cells promote colorectal cancer progression through AMPK/mTOR-mediated NF-κB activation. Scientific Reports, 6(1), 1–12.

    Google Scholar 

  9. Di, G.-h, Liu, Y., Lu, Y., Liu, J., Wu, C., & Duan, H.-F. (2014). IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells. PloS One, 9(11), e113572.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu, C., Billet, S., Choudhury, D., Cheng, R., Haldar, S., Fernandez, A., et al. (2021). Bone marrow mesenchymal stem cells interact with head and neck squamous cell carcinoma cells to promote cancer progression and drug resistance. Neoplasia, 23(1), 118–128.

    Article  CAS  PubMed  Google Scholar 

  11. Maj, M., Bajek, A., Nalejska, E., Porowinska, D., Kloskowski, T., Gackowska, L., et al. (2017). Influence of mesenchymal stem cells conditioned media on proliferation of urinary tract cancer cell lines and their sensitivity to ciprofloxacin. Journal of Cellular Biochemistry, 118(6), 1361–1368.

    Article  CAS  PubMed  Google Scholar 

  12. Dhiman, N., Shagaghi, N., Bhave, M., Sumer, H., Kingshott, P., & Rath, S. N. (2021). Indirect co-culture of lung carcinoma cells with hyperthermia-treated mesenchymal stem cells influences tumor spheroid growth in a collagen-based 3-dimensional microfluidic model. Cytotherapy, 23(1), 25–36.

    Article  CAS  PubMed  Google Scholar 

  13. Gauthaman, K., Yee, F. C., Cheyyatraivendran, S., Biswas, A., Choolani, M., & Bongso, A. (2012). Human umbilical cord Wharton’s jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro. Journal of Cellular Biochemistry, 113(6), 2027–2039.

    Article  CAS  PubMed  Google Scholar 

  14. Fonseka, M., Ramasamy, R., Tan, B. C., & Seow, H. F. (2012). Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) inhibit the proliferation of K562 (human erythromyeloblastoid leukaemic cell line). Cell Biology International, 36(9), 793–801.

    Article  CAS  PubMed  Google Scholar 

  15. Motaln, H., Gruden, K., Hren, M., Schichor, C., Primon, M., Rotter, A., et al. (2012). Human mesenchymal stem cells exploit the immune response mediating chemokines to impact the phenotype of glioblastoma. Cell Transplantation, 21(7), 1529–1545.

    Article  PubMed  Google Scholar 

  16. Fathi, E., Farahzadi, R., Valipour, B., & Sanaat, Z. (2019). Cytokines secreted from bone marrow derived mesenchymal stem cells promote apoptosis and change cell cycle distribution of K562 cell line as clinical agent in cell transplantation. PLoS One, 14(4), e0215678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khalil, C., Moussa, M., Azar, A., Tawk, J., Habbouche, J., Salameh, R., et al. (2019). Anti-proliferative effects of mesenchymal stem cells (MSCs) derived from multiple sources on ovarian cancer cell lines: An in-vitro experimental study. Journal of Ovarian Research, 12(1), 1–12.

    Article  CAS  Google Scholar 

  18. Ayuzawa, R., Doi, C., Rachakatla, R. S., Pyle, M. M., Maurya, D. K., Troyer, D., et al. (2009). Naive human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Letters, 280(1), 31–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Larmonier, N., Ghiringhelli, F., Larmonier, C. B., Moutet, M., Fromentin, A., Baulot, E., et al. (2003). Freshly isolated bone marrow cells induce death of various carcinoma cell lines. International Journal of Cancer, 107(5), 747–756.

    Article  CAS  PubMed  Google Scholar 

  20. Lim, Y.-S., Lee, J.-C., Lee, Y. S., Lee, B.-J., & Wang, S.-G. (2012). Growth inhibitory effect of palatine tonsil-derived mesenchymal stem cells on head and neck squamous cell carcinoma cells. Clinical and Experimental Otorhinolaryngology, 5(2), 86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ganta, C., Ayuzawa, R., Rachakatla, R., Pyle, M., Andrews, G., Weiss, M., et al. (2009). Rat umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post–tumor cell inoculation. Cancer Research, 69(5), 1815–1820.

    Article  CAS  PubMed  Google Scholar 

  22. Zachar, L., Bačenková, D., & Rosocha, J. (2016). Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. Journal of Inflammation Research, 9, 231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akimoto, K., Kimura, K., Nagano, M., Takano, S., To’a Salazar, G., Yamashita, T., et al. (2013). Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem cells and Development, 22(9), 1370–1386.

    Article  CAS  PubMed  Google Scholar 

  24. Lu, L., Chen, G., Yang, J., Ma, Z., Yang, Y., Hu, Y., et al. (2019). Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway. Biomedicine & Pharmacotherapy, 112, 108625.

    Article  CAS  Google Scholar 

  25. Song, N., Gao, L., Qiu, H., Huang, C., Cheng, H., Zhou, H., et al. (2015). Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant. International Journal of Molecular Medicine, 36(1), 139–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ramasamy, R., Lam, E. W., Soeiro, I., Tisato, V., Bonnet, D., & Dazzi, F. (2007). Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: Impact on in vivo tumor growth. Leukemia, 21(2), 304–310.

    Article  CAS  PubMed  Google Scholar 

  27. Li, Q., Pang, Y., Liu, T., Tang, Y., Xie, J., Zhang, B., et al. (2018). Effects of human umbilical cord-derived mesenchymal stem cells on hematologic malignancies. Oncology Letters, 15(5), 6982–6990.

    PubMed  PubMed Central  Google Scholar 

  28. Zhu, Y., Sun, Z., Han, Q., Liao, L., Wang, J., Bian, C., et al. (2009). Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia, 23(5), 925–933.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, M. W., Park, Y. J., Kim, D. S., Park, H. J., Jung, H. L., Lee, J. W., et al. (2018). Human adipose tissue stem cells promote the growth of acute lymphoblastic leukemia cells in NOD/SCID mice. Stem Cell Reviews and Reports, 14(3), 451–460.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, X., Ni, L., Wan, S., Zhao, X., Ding, X., Dejean, A., et al. (2020). Febrile temperature critically controls the differentiation and pathogenicity of T helper 17 cells. Immunity, 52(2), 328–41. e5.

    Article  PubMed  Google Scholar 

  31. Ha, P. T., Le, T. T. H., Bui, T. Q., Pham, H. N., Ho, A. S., & Nguyen, L. T. (2019). Doxorubicin release by magnetic inductive heating and in vivo hyperthermia-chemotherapy combined cancer treatment of multifunctional magnetic nanoparticles. New Journal of Chemistry., 43(14), 5404–5413.

    Article  CAS  Google Scholar 

  32. Lim, C., Kang, J. K., Won, W. R., Park, J. Y., Han, S. M., Tn, Le., et al. (2019). Co-delivery of D-(KLAKLAK) 2 peptide and chlorin e6 using a liposomal complex for synergistic cancer therapy. Pharmaceutics, 11(6), 293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mues, B., Bauer, B., Roeth, A. A., Ortega, J., Buhl, E. M., Radon, P., et al. (2021). Nanomagnetic actuation of hybrid stents for hyperthermia treatment of hollow organ tumors. Nanomaterials, 11(3), 618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goyal, U., & Ta, M. (2019). P53-NF-κB crosstalk in febrile temperature-treated human umbilical cord-derived mesenchymal stem cells. Stem Cells and Development., 28(1), 56–68.

    Article  CAS  PubMed  Google Scholar 

  35. Sen, A., & Ta, M. (2020). Altered adhesion and migration of human mesenchymal stromal cells under febrile temperature stress involves nf-κβ pathway. Scientific Reports, 10(1), 1–14.

    Article  Google Scholar 

  36. Cho, J. A., Park, H., Kim, H. K., Lim, E. H., Seo, S. W., Choi, J. S., et al. (2009). Hyperthermia-treated mesenchymal stem cells exert antitumor effects on human carcinoma cell line. Cancer, 115(2), 311–323.

    Article  CAS  PubMed  Google Scholar 

  37. Park, H., Cho, J.-A., Kim, S.-K., Kim, J.-H., & Lee, S.-H. (2008). Hyperthermia on mesenchymal stem cells (MSCs) can sensitize tumor cells to undergo cell death. International Journal of Hyperthermia, 24(8), 638–648.

    Article  CAS  PubMed  Google Scholar 

  38. Sánchez-Rodríguez, C., Cruces, K. P., Ayora, J. R., Martín-Sanz, E., & Sanz-Fernández, R. (2017). BCG immune activation reduces growth and angiogenesis in an in vitro model of head and neck squamous cell carcinoma. Vaccine, 35(47), 6395–6403.

    Article  PubMed  Google Scholar 

  39. Mueller, S. N., & Germain, R. N. (2009). Stromal cell contributions to the homeostasis and functionality of the immune system. Nature Reviews Immunology, 9(9), 618–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nave, H., Gebert, A., & Pabst, R. (2001). Morphology and immunology of the human palatine tonsil. Anatomy and Embryology, 204(5), 367–373.

    Article  CAS  PubMed  Google Scholar 

  41. Smith, N., Bekaddour, N., Leboulanger, N., Richard, Y., & Herbeuval, J.-P. (2020). Isolation of tonsillar mononuclear cells to study ex vivo innate immune responses in a human mucosal lymphoid tissue. JoVE (Journal of Visualized Experiments), 160, e60914.

    Google Scholar 

  42. Yuce, M., & Albayrak, E. (2022). Hyperthermia-stimulated tonsil-mesenchymal stromal cells suppress hematological cancer cells through downregulation of IL-6. Journal of Cellular Biochemistry, 123(12), 1966–1979.

    Article  PubMed  Google Scholar 

  43. Oh, S.-Y., Choi, Y. M., Kim, H. Y., Park, Y. S., Jung, S.-C., Park, J.-W., et al. (2019). Application of tonsil-derived mesenchymal stem cells in tissue regeneration: Concise review. Stem Cells, 37(10), 1252–1260.

    Article  PubMed  Google Scholar 

  44. Choi, J.-S., Lee, B.-J., Park, H.-Y., Song, J.-S., Shin, S.-C., Lee, J.-C., et al. (2015). Effects of donor age, long-term passage culture, and cryopreservation on tonsil-derived mesenchymal stem cells. Cellular Physiology and Biochemistry, 36(1), 85–99.

    Article  CAS  PubMed  Google Scholar 

  45. Rieger, A. M., Nelson, K. L., Konowalchuk, J. D., & Barreda, D. R. (2011). Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. JoVE (Journal of Visualized Experiments), 50, e2597.

    Google Scholar 

  46. Albayrak, E., Uslu, M., Akgol, S., Tuysuz, E. C., & Kocabas, F. (2021). Small molecule-mediated modulation of ubiquitination and neddylation improves HSC function ex vivo. Journal of Cellular Physiology, 236(12), 8122–8136.

    Article  CAS  PubMed  Google Scholar 

  47. Kntayya, S. B., Ibrahim, M. D., Mohd Ain, N., Iori, R., Ioannides, C., & Abdull Razis, A. F. (2018). Induction of apoptosis and cytotoxicity by isothiocyanate sulforaphene in human hepatocarcinoma HepG2 cells. Nutrients, 10(6), 718.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kajstura, M., Halicka, H. D., Pryjma, J., & Darzynkiewicz, Z. (2007). Discontinuous fragmentation of nuclear DNA during apoptosis revealed by discrete “sub-G1” peaks on DNA content histograms. Cytometry Part A: The journal of the International Society for Analytical Cytology, 71(3), 125–131.

    Article  PubMed  Google Scholar 

  49. Czene, S., Testa, E., Nygren, J., Belyaev, I., & Harms-Ringdahl, M. (2002). DNA fragmentation and morphological changes in apoptotic human lymphocytes. Biochemical and Biophysical Research Communications, 294(4), 872–878.

    Article  CAS  PubMed  Google Scholar 

  50. McKerrell, T., & Vassiliou, G. S. (2015). Aging as a driver of leukemogenesis. Science Translational Medicine, 7(306), 306fs38-fs38.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hoffman, B., & Liebermann, D. (2008). Apoptotic signaling by c-MYC. Oncogene, 27(50), 6462–6472.

    Article  CAS  PubMed  Google Scholar 

  52. Chipuk, J. E., Kuwana, T., Bouchier-Hayes, L., Droin, N. M., Newmeyer, D. D., Schuler, M., et al. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science, 303(5660), 1010–1014.

    Article  CAS  PubMed  Google Scholar 

  53. Zhu, H., Zhang, L., Wu, S., Teraishi, F., Davis, J. J., Jacob, D., et al. (2004). Induction of S-phase arrest and p21 overexpression by a small molecule 2 [[3-(2, 3-dichlorophenoxy) propyl] amino] ethanol in correlation with activation of ERK. Oncogene, 23(29), 4984–4992.

    Article  CAS  PubMed  Google Scholar 

  54. Hoeferlin, L. A., Oleinik, N. V., & Krupenko, S. A. (2008). The role of CDK inhibitor p21 in anti-proliferative effects of 10-Formyltetrahydrofolate Dehydrogenase. Wiley Online Library.

    Book  Google Scholar 

  55. Cousin, B., Ravet, E., Poglio, S., De Toni, F., Bertuzzi, M., Lulka, H., et al. (2009). Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One, 4(7), e6278.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yamout, B., Hourani, R., Salti, H., Barada, W., El-Hajj, T., Al-Kutoubi, A., et al. (2010). Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: A pilot study. Journal of Neuroimmunology, 227(1–2), 185–189.

    Article  CAS  PubMed  Google Scholar 

  57. Mancuso, P., Raman, S., Glynn, A., Barry, F., & Murphy, J. M. (2019). Mesenchymal stem cell therapy for osteoarthritis: the critical role of the cell secretome. Frontiers in Bioengineering and Biotechnology, 7, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Karantalis, V., & Hare, J. M. (2015). Use of mesenchymal stem cells for therapy of cardiac disease. Circulation Research, 116(8), 1413–1430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Joyce, N., Annett, G., Wirthlin, L., Olson, S., Bauer, G., & Nolta, J. A. (2010). Mesenchymal stem cells for the treatment of neurodegenerative disease. Regenerative Medicine, 5(6), 933–946.

    Article  PubMed  Google Scholar 

  60. Regmi, S., Pathak, S., Kim, J. O., Yong, C. S., & Jeong, J.-H. (2019). Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives. European Journal of Cell Biology, 98(5–8), 151041.

    Article  CAS  PubMed  Google Scholar 

  61. Yuan, Y., Chen, D., Chen, X., Shao, H., & Huang, S. (2014). Human umbilical cord-derived mesenchymal stem cells inhibit proliferation but maintain survival of Jurkat leukemia cells in vitro by activating Notch signaling. Nan Fang Yi Ke Da Xue Xue Bao, 34(4), 441–447.

    CAS  PubMed  Google Scholar 

  62. Tian, K., Yang, S., Ren, Q., Han, Z., Lu, S., Ma, F., et al. (2010). p38 MAPK contributes to the growth inhibition of leukemic tumor cells mediated by human umbilical cord mesenchymal stem cells. Cellular Physiology and Biochemistry., 26(6), 799–808.

    Article  CAS  PubMed  Google Scholar 

  63. Wei, Z., Chen, N., Guo, H., Wang, X., Xu, F., Ren, Q., et al. (2009). Bone marrow mesenchymal stem cells from leukemia patients inhibit growth and apoptosis in serum-deprived K562 cells. Journal of Experimental & Clinical Cancer Research, 28(1), 1–7.

    Article  CAS  Google Scholar 

  64. Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24(5), 1294–1301.

    Article  CAS  PubMed  Google Scholar 

  65. Janjanin, S., Djouad, F., Shanti, R. M., Baksh, D., Gollapudi, K., Prgomet, D., et al. (2008). Human palatine tonsil: A new potential tissue source of multipotent mesenchymal progenitor cells. Arthritis Research & Therapy, 10(4), 1–12.

    Article  Google Scholar 

  66. Evans, S. S., Repasky, E. A., & Fisher, D. T. (2015). Fever and the thermal regulation of immunity: The immune system feels the heat. Nature Reviews Immunology., 15(6), 335–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cho, K.-A., Lee, H. J., Jeong, H., Kim, M., Jung, S. Y., Park, H. S., et al. (2019). Tonsil-derived stem cells as a new source of adult stem cells. World Journal of Stem Cells, 11(8), 506.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yonish-Rouach, E., Resnftzky, D., Lotem, J., Sachs, L., Kimchi, A., & Oren, M. (1991). Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature, 352(6333), 345–347.

    Article  CAS  PubMed  Google Scholar 

  69. Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source. Arthritis & Rhematology, 52(8), 2521–2529.

    Article  Google Scholar 

  70. Yoshimura, H., Muneta, T., Nimura, A., Yokoyama, A., Koga, H., & Sekiya, I. (2007). Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell and Tissue Research, 327(3), 449–462.

    Article  CAS  PubMed  Google Scholar 

  71. Wang, W., Li, L., Chen, F., & Yang, Y. (2018). Umbilical cord-derived mesenchymal stem cells can inhibit the biological functions of melanoma A375 cells. Oncology Reports, 40(1), 511–517.

    CAS  PubMed  Google Scholar 

  72. Steiner, H., Cavarretta, I. T., Moser, P. L., Berger, A. P., Bektic, J., Dietrich, H., et al. (2006). Regulation of growth of prostate cancer cells selected in the presence of interleukin-6 by the anti-interleukin-6 antibody CNTO 328. The Prostate, 66(16), 1744–1752.

    Article  CAS  PubMed  Google Scholar 

  73. Guo, Y., Xu, F., Lu, T., Duan, Z., & Zhang, Z. (2012). Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treatment Reviews, 38(7), 904–910.

    Article  CAS  PubMed  Google Scholar 

  74. Reynaud, D., Pietras, E., Barry-Holson, K., Mir, A., Binnewies, M., Jeanne, M., et al. (2011). IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell, 20(5), 661–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cozen, W., Gill, P. S., Ingles, S. A., Masood, R., Martínez-Maza, O., Cockburn, M. G., et al. (2004). IL-6 levels and genotype are associated with risk of young adult Hodgkin lymphoma. Blood, 103(8), 3216–3221.

    Article  CAS  PubMed  Google Scholar 

  76. Lai, R., O’Brien, S., Maushouri, T., Rogers, A., Kantarjian, H., Keating, M., et al. (2002). Prognostic value of plasma interleukin-6 levels in patients with chronic lymphocytic leukemia. Cancer, 95(5), 1071–1075.

    Article  CAS  PubMed  Google Scholar 

  77. Mormile, R. (2020). Hyperthermia, positive feedback loop with IL-6 and risk of NSCLC progression: A tangle to unravel? Journal of Cancer Research and Clinical Oncology, 146(4), 1101–1102.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Assoc. Dr. Fatih Kocabaş, Yeditepe University Department of Genetics and Bioengineering faculty member for generously providing hematological cancer cell lines. In addition, we thank Dr. Gökhan Akgül and Assoc. Dr. Gültekin Ozan Küçük for assisting in the supply of tonsil tissue.

Funding

This work was funded by Ondokuz Mayıs University, Scientific Research Project Office, Turkey.

Author information

Authors and Affiliations

Authors

Contributions

MY: conceptualization, investigation, methodology, data curation, validation, funding acquisition, project administration, resources, writing and original draft preparation; EA: conceptualization, investigation, methodology, data curation, validation and original draft preparation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Melek Yuce.

Ethics declarations

Ethics Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Clinic Research Ethics Committee of the Ondokuz Mayıs University of A (No. 2021/347).

Informed Consent Statement

To isolate human tonsil-derived mesenchymal stem cells, the tonsil tissues were obtained from the donors who have undergone tonsillectomy with donor’s consent and approval of OMU clinic research ethics committee (Decision number: 2021/347).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuce, M., Albayrak, E. Paracrine Factors Released from Tonsil-Derived Mesenchymal Stem Cells Inhibit Proliferation of Hematological Cancer Cells Under Hyperthermia in Co-culture Model. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04757-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04757-7

Keywords

Navigation