Skip to main content
Log in

Apis mellifera anatoliaca Venom Exerted Anti-Inflammatory Activity on LPS-Stimulated Mammalian Macrophages by Reducing the Production of the Inflammatory Cytokines

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Extraction and characterization of natural products provide the opportunity to expand our arsenal of drug candidates against a wide range of diseases including cancer and inflammatory disorders. Previous studies have shown bee venom to have immense potential as an anti-inflammatory drug candidate. In this study, we focused on the venom of Apis mellifera anatoliaca and characterized its content by HPLC. An in vitro inflammation model based on lipopolysaccharide (LPS)-stimulated mammalian macrophages was utilized to examine the venom’s anti-inflammatory potential. Additionally, its antiproliferative activity was evaluated in vitro against a human glioblastoma cell line. Based on the TNF, IL6, GMCSF, and IL12p40 pro-inflammatory cytokine production level in LPS-induced macrophages, venom-treated groups showed substantial decrease in the inflammatory action compared to untreated LPS-stimulated macrophages. When the cells were analyzed for viability, the venom did not have any cytotoxic effect on the macrophages at the concentration ranges that were utilized. Moreover, IC50 value of the venom was above 60 µg/mL on glioblastoma cancer cell line. These results suggest that the Apis mellifera anatoliaca venom does not have anticancer drug candidate potential, whereas it can efficiently be used against inflammatory and autoimmune disorders. To our knowledge, this is the first study to specifically examine the effect of anti-inflammatory activity of Apis mellifera anatoliaca venom on macrophages.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

This article has no additional data.

References

  1. Abd El-Wahed, A. A., Khalifa, S. A., Sheikh, B. Y., Farag, M. A., Saeed, A., Larik, F. A., ... & El-Seedi, H. R. (2019). Bee venom composition: From chemistry to biological activity. In Studies in Natural Products Chemistry, 60, 459–484. Elsevier.

  2. Ayaz, F., Alas, M. O., & Genc, R. (2020). Differential immunomodulatory effect of carbon dots influenced by the type of surface passivation agent. Inflammation, 43, 777–783. https://doi.org/10.1007/s10753-019-01165-0

    Article  CAS  PubMed  Google Scholar 

  3. Bellik, Y. (2015). Bee venom: Its potential use in alternative medicine. Anti-infective Agents, 13(1), 3–16.

    Article  CAS  Google Scholar 

  4. Bilir, E. K., Tutun, H., Sevin, S., Kismali, G., & Yarsan, E. (2018). Cytotoxic effects of Rhododendron ponticum L. extract on prostate carcinoma and adenocarcinoma cell line (DU145, PC3). KafkasÜniversitesiVeterinerFakültesiDergisi, 24(3).

  5. Borojeni, S. K., Zolfagharian, H., Babaie, M., & Javadi, I. (2020). Cytotoxic effect of bee (A mellifera) venom on cancer cell lines. Journal of Pharmacopuncture, 23(4), 212.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen, J., & Lariviere, W. R. (2010). The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword. Progress in Neurobiology, 92(2), 151–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Danneels, E. L., Van Vaerenbergh, M., Debyser, G., Devreese, B., & de Graaf, D. C. (2015). Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach. Toxins, 7(11), 4468–4483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. El-Seedi, H., El-Wahed, A., Yosri, N., Musharraf, S. G., Chen, L., Moustafa, M., ... & Khalifa, S. (2020). Antimicrobial properties of apismellifera’s bee venom. Toxins, 12(7), 451.

  9. Foey, A. D., & Brennan, F. M. (2004). Conventional protein kinase C and atypical protein kinase Czeta differentially regulate macrophage production of tumour necrosis factor-alpha and interleukin-10. Immunology, 112(1), 44–53. https://doi.org/10.1111/j.1365-2567.2004.01852.x]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frangieh, J., Salma, Y., Haddad, K., Mattei, C., Legros, C., Fajloun, Z., & El Obeid, D. (2019). First characterization of the venom from Apismelliferasyriaca, a honeybee from the Middle East region. Toxins, 11, 191. https://doi.org/10.3390/toxins11040191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fujiwara, N., & Kobayashi, K. (2005). Macrophages in inflammation. Current Drug Targets: Inflammation & Allergy, 4(3), 281–286. https://doi.org/10.2174/1568010054022024

    Article  CAS  Google Scholar 

  12. Furkan, A. Y. A. Z. (2018). Ruthenium based photosensitizer exerts immunostimulatory and possible adjuvant role on the mammalian macrophages in vitro. Cumhuriyet Science Journal, 39(4), 991–998.

    Article  Google Scholar 

  13. Gallego, C., Golenbock, D., Gomez, M. A., & Saravia, N. G. (2011). Toll-like receptors participate in macrophage activation and intracellular control of Leishmania (Viannia) panamensis. Infection and Immunity, 79(7), 2871–2879. https://doi.org/10.1128/IAI.01388-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gordon, S., & Martinez-Pomares, L. (2017). Physiological roles of macrophages. PflugersArchiv : European Journal of Physiology, 469(3–4), 365–374. https://doi.org/10.1007/s00424-017-1945-7

    Article  CAS  PubMed  Google Scholar 

  15. Ma, W. T., Gao, F., Gu, K., & Chen, D. K. (2019). The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Frontiers in Immunology, 10, 1140. https://doi.org/10.3389/fimmu.2019.01140]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grip, O., Janciauskiene, S., & Lindgren, S. (2003). Macrophages in inflammatory bowel disease. Current Drug Targets: Inflammation & Allergy, 2(2), 155–160. https://doi.org/10.2174/1568010033484179

    Article  CAS  Google Scholar 

  17. Hong, S. J., Rim, G. S., Yang, H. I., Yin, C. S., Koh, H. G., Jang, M. H., ... & Chung, J. H. (2005). Bee venom induces apoptosis through caspase-3 activation in synovial fibroblasts of patients with rheumatoid arthritis. Toxicon, 46(1), 39-45.

  18. Jang, M. H., Shin, M. C., Lim, S., Han, S. M., Park, H. J., Shin, I., ... & Kim, C. J. (2003). Bee venom induces apoptosis and inhibits expression of cyclooxygenase-2 mRNA in human lung cancer cell line NCI-H1299. Journal of Pharmacological Sciences, 91(2), 95-104.

  19. Jurna, I. (1997). Response to Lariviere and Melzack, PAIN, 66 (1996) 271–277: PAIN 3293. Pain, 71(1), 113–114.

    Article  CAS  PubMed  Google Scholar 

  20. Kany, S., Vollrath, J. T., & Relja, B. (2019). Cytokines in inflammatory disease. International Journal of Molecular Sciences, 20(23), 6008. https://doi.org/10.3390/ijms20236008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karimi, A., Ahmadi, F., Parivar, K., Nabiuni, M., Haghighi, S., Imani, S., & Afrouzi, H. (2012). Effect of honey bee venom on lewis rats with experimental allergic encephalomyelitis, a model for multiple sclerosis. Iranian Journal of Pharmaceutical Research: IJPR, 11(2), 671.

    PubMed  PubMed Central  Google Scholar 

  22. Kim, H. W., Kwon, Y. B., Ham, T. W., Roh, D. H., Yoon, S. Y., Lee, H. J., ... & Lee, J. H. (2003). Acupoint stimulation using bee venom attenuates formalin-induced pain behavior and spinal cord fos expression in rats. Journal of Veterinary Medical Science, 65(3), 349-355.

  23. Kokot, Z. J., & Matysiak, J. (2009). Simultaneous determination of major constituents of honeybee venom by LCDAD. Chromatographia, 69(11–12), 1401–1405.

    Article  CAS  Google Scholar 

  24. Kwon, Y. B., Lee, J. D., Lee, H. J., Han, H. J., Mar, W. C., Kang, S. K., ... & Lee, J. H. (2001). Bee venom injection into an acupuncture point reduces arthritis associated edema and nociceptive responses. Pain, 90(3), 271-280.

  25. Lee, G., & Bae, H. (2016). Anti-inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects. Molecules (Basel, Switzerland), 21(5), 616. https://doi.org/10.3390/molecules21050616]

    Article  PubMed  Google Scholar 

  26. Leuschner, C., & Hansel, W. (2004). Membrane disrupting lytic peptides for cancer treatments. Current Pharmaceutical Design, 10(19), 2299–2310.

    Article  CAS  PubMed  Google Scholar 

  27. Ling, C. Q., Li, B., Zhang, C., Gu, W., Li, S. X., Huang, X. Q., & Zhang, Y. N. (2004). Anti-hepatocarcinoma effect of recombinant adenovirus carrying melittin gene. Zhonghuaganzangbingzazhi= Zhonghuaganzangbingzazhi= Chinese journal of hepatology, 12(12), 741–744.

    CAS  PubMed  Google Scholar 

  28. Liu, X., Chen, D., Xie, L., & Zhang, R. (2002). Effect of honey bee venom on proliferation of K1735M2 mouse melanoma cells in-vitro and growth of murine B16 melanomas in-vivo. Journal of Pharmacy and Pharmacology, 54(8), 1083–1089.

    Article  CAS  PubMed  Google Scholar 

  29. Lue, H., Dewor, M., Leng, L., Bucala, R., & Bernhagen, J. (2011). Activation of the JNK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on CXCR4 and CD74. Cellular Signalling, 23(1), 135–144. https://doi.org/10.1016/j.cellsig.2010.08.013

    Article  CAS  PubMed  Google Scholar 

  30. Moon, D. O., Park, S. Y., Heo, M. S., Kim, K. C., Park, C., Ko, W. S., ... & Kim, G. Y. (2006). Key regulators in bee venom-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of ERK and Akt. International Immunopharmacology, 6(12), 1796-1807.

  31. Moreno, M., & Giralt, E. (2015). Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin, apamin and mastoparan. Toxins, 7(4), 1126–1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nam, K. W., Je, K. H., Lee, J. H., Han, H. J., Lee, H. J., Kang, S. K., & Mar, W. (2003). Inhibition of COX-2 activity and proinflammatory cytokines (TNF-alpha and IL-1beta) production by water-soluble sub-fractionated parts from bee (Apis mellifera) venom. Archives of Pharmacal Research, 26(5), 383–388.

    Article  CAS  PubMed  Google Scholar 

  33. Oršolić, N. (2012). Bee venom in cancer therapy. Cancer and metastasis reviews, 31(1), 173–194.

    Article  PubMed  Google Scholar 

  34. Ovcharov, R., Shkenderov, S., & Mihailova, S. (1976). Anti-inflammatory effects of apamin. Toxicon, 14(6), 441–447. https://doi.org/10.1016/0041-0101(76)90060-x. PMID: 1014033.

    Article  CAS  PubMed  Google Scholar 

  35. Pacakova, V., Štulík, K., Hau, P. T., Jelinek, I., Vinš, I., & Sýkora, D. (1995). Comparison of high-performance liquid chromatography and capillary electrophoresis for the determination of some bee venom components. Journal of Chromatography A, 700(1), 187–193.

    Article  CAS  Google Scholar 

  36. Premratanachai, P., & Chanchao, C. (2014). Review of the anticancer activities of bee products. Asian Pacific Journal of Tropical Biomedicine, 4(5), 337–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pucca, M. B., Cerni, F. A., Oliveira, I. S., Jenkins, T. P., Argemí, L., Sørensen, C. V., ... & Laustsen, A. H. (2019). Bee updated: Current knowledge on bee venom and bee envenoming therapy. Frontiers in Immunology, 10, 2090.

  38. Rybak-Chmielewska, H., & Szczêsna, T. (2004). HPLC study of chemical composition of honeybee (Apis mellifera L.) venom. Journal of Apicultural Science, 48(2), 103–109.

    Google Scholar 

  39. Sharif, O., Brunner, J. S., Vogel, A., & Schabbauer, G. (2019). Macrophage rewiring by nutrient associated PI3K dependent pathways. Frontiers in Immunology, 10, 2002. https://doi.org/10.3389/fimmu.2019.02002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Şirin, Y., Çalı, H. E., Can, Z., Yıldız, O., & Kolayli, S. (2017). Bal ArisiZehrininKarakterizasyonundaSds-Page ElektroforezKullanilabilirliğininAraştirilmasi. UludağArıcılıkDergisi, 16(2), 49–56.

    Google Scholar 

  41. Sisakht, M., Mashkani, B., Bazi, A., Ostadi, H., Zare, M., Avval, F. Z., ... & Soukhtanloo, M. (2017). Bee venom induces apoptosis and suppresses matrix metaloprotease-2 expression in human glioblastoma cells. RevistaBrasileira de Farmacognosia, 27, 324-328.

  42. Son, D. J., Lee, J. W., Lee, Y. H., Song, H. S., Lee, C. K., & Hong, J. T. (2007). Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacology & Therapeutics, 115(2), 246–270.

    Article  CAS  Google Scholar 

  43. Taylor, W. F., & Jabbarzadeh, E. (2017). The use of natural products to target cancer stem cells. American Journal of Cancer Research, 7(7), 1588.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tekeoğlu, İ, Akdoğan, M., & Çelik, İ. (2020). Investigation of anti-inflammatory effects of bee venom in experimentally induced adjuvant arthritis. Reumatologia, 58(5), 265–271. https://doi.org/10.5114/reum.2020.99764

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tutun, S., Kaya, M. M., Usluer, M. S., & Tutun, H. (2020). Investigation of antiproliferative effects of Hypericum perforatum oil on myeloma cells. Veterinary Journal of Mehmet AkifErsoy University, 5(2), 79–82.

    Google Scholar 

  46. Udalova, I., Mantovani, A., & Feldmann, M. (2016). Macrophage heterogeneity in the context of rheumatoid arthritis. Nature Reviews Rheumatology, 12, 472–485. https://doi.org/10.1038/nrrheum.2016.91

    Article  CAS  PubMed  Google Scholar 

  47. Varanda, E. A., Monti, R., & Tavares, D. C. (1999). Inhibitory effect of propolis and bee venom on the mutagenicity of some direct- and indirect-acting mutagens. Teratogenesis Carcinogenesis and Mutagenesis, 19(6), 403–413.

    Article  CAS  PubMed  Google Scholar 

  48. Varbanov, H. P., Kuttler, F., Banfi, D., Turcatti, G., & Dyson, P. J. (2017). Repositioning approved drugs for the treatment of problematic cancers using a screening approach. PLoS One, 12(2), e0171052.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vogel, D. Y., Vereyken, E. J., Glim, J. E., Heijnen, P. D., Moeton, M., van der Valk, P., Amor, S., Teunissen, C. E., van Horssen, J., & Dijkstra, C. D. (2013). Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. Journal of Neuroinflammation, 10, 35. https://doi.org/10.1186/1742-2094-10-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wynn, T. A., Chawla, A., & Pollard, J. W. (2013). Macrophage biology in development, homeostasis and disease. Nature, 496(7446), 445–455. https://doi.org/10.1038/nature12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, J. M., & An, J. (2007). Cytokines, inflammation, and pain. International Anesthesiology Clinics, 45(2), 27–37. https://doi.org/10.1097/AIA.0b013e318034194e]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, Z., Zhan, W., Chen, H., Chen, Y., Li, C., Yang, Y., ... & Sharma, A. (2020). Inhibitory effect of SiweiXiaoliuyin on glioma angiogenesis in nude mice. International Review of Neurobiology, 151, 243-252.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. S.S. and H.T. provided bee venom. R.U., S.S., and H.T performed cell viability test. I.K. performed component analysis. Biological analysis and data collection were performed by F.A. The first draft of the manuscript was written by F.A, and HT helped shape the manuscript with support from RU and FA. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Furkan Ayaz.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

All authors approved the last version of the manuscript before submission. We did not have any patient data or ethical condition therefore we did not need consent for that.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevin, S., Kivrak, İ., Tutun, H. et al. Apis mellifera anatoliaca Venom Exerted Anti-Inflammatory Activity on LPS-Stimulated Mammalian Macrophages by Reducing the Production of the Inflammatory Cytokines. Appl Biochem Biotechnol 195, 3194–3205 (2023). https://doi.org/10.1007/s12010-022-04284-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04284-x

Keywords

Navigation