Skip to main content
Log in

Data-Independent Acquisition-Based Mass Spectrometry (DIA-MS) for Quantitative Analysis of Human Intestinal Ischemia/Reperfusion

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Intestinal ischemia–reperfusion (II/R) injury is a complex pathologic process, which is of great significance to unravel the underlying mechanisms and pathophysiology. Our study represented a comprehensive proteomic analysis in the human intestine with ischemia–reperfusion injury. The proteomics analysis measured a total of 5,230 proteins, and 417 differently expressed proteins (DEPs) were identified between II/R and control samples. GO and KEGG analysis demonstrated that the 290 upregulated DEPs in II/R were significantly involved in immune-related biological process and tight junction, focal adhesion, and cAMP signaling pathway, whereas the 127 downregulated DEPs in II/R were enriched in lipid metabolic process and metabolic pathway. Furthermore, we screened out 20 hub proteins from the protein–protein interaction (PPI) network according to the degree of connectivity, and six clusters were identified. Combined with the result of KEGG analysis, 6 from the 20 hub proteins, ACTB, CAV1, FLNA, MYLK, ACTN1, and MYL9, were identified as the key proteins in the progress of II/R injury. According to the previous studies, FLNA and MYL9 were selected as the novel disease-related proteins for the first time. In conclusion, this study extended our understanding of the alteration in the human intestine during ischemia and reperfusion and highlighted the potential role of FLNA and MYL9 in the progress of II/R injury, which need to be further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The mass spectrometry proteomics data have been deposited to the Proteome Xchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository with the dataset identifier PXD033218.

Abbreviations

DDA:

Data-dependent acquisition

DIA:

Data-independent acquisition

II/R:

Intestinal ischemia–reperfusion

LC–MS/MS:

Liquid chromatography–tandem mass spectrometry

DEP:

Differently expressed proteins

PPI:

Protein–protein interaction

KEGG:

Kyoto Encyclopedia of Genes and Genomes

GO:

Gene Ontology

ROS:

Reactive oxygen species

ICU:

Intensive care unit

PCA:

Principal component analysis

STRING:

Search Tool for the Retrieval of Interacting Genes

MCODE:

Molecular Complex Detection

LFQ:

Label-free quantification

References

  1. Jiang, Z., Chen, S., Zhang, L., Shen, J., & Zhong, M. (2021). Potentially functional microRNA-mRNA regulatory networks in intestinal ischemia-reperfusion injury: A bioinformatics analysis. Journal of Inflammation Research, 14, 4817–4825.

    Article  Google Scholar 

  2. Mazzei, M. A. (2018). Acute mesenteric ischemia: Guidelines of the World Society of Emergency Surgery: A brief radiological commentary. World J Emerg Surgery, 13, 34.

    Article  Google Scholar 

  3. Oldenburg, W. A., Lau, L. L., Rodenberg, T. J., Edmonds, H. J., & Burger, C. D. (2004). Acute mesenteric ischemia: A clinical review. Archives of Internal Medicine, 164, 1054–1062.

    Article  Google Scholar 

  4. Malinovic, M., Walker, J., & Lee, F. (2021). Ischemia-reperfusion injury after posterior cervical laminectomy. Cureus, 13, e18298.

    PubMed  PubMed Central  Google Scholar 

  5. Grootjans, J., Lenaerts, K., Derikx, J. P., Matthijsen, R. A., de Bruïne, A. P., van Bijnen, A. A., van Dam, R. M., Dejong, C. H., & Buurman, W. A. (2010). Human intestinal ischemia-reperfusion-induced inflammation characterized: Experiences from a new translational model. American Journal of Pathology, 176, 2283–2291.

    Article  CAS  Google Scholar 

  6. Grootjans, J., Thuijls, G., Derikx, J. P., van Dam, R. M., Dejong, C. H., & Buurman, W. A. (2011). Rapid lamina propria retraction and zipper-like constriction of the epithelium preserves the epithelial lining in human small intestine exposed to ischaemia–reperfusion. The Journal of Pathology, 224, 411–419.

    Article  CAS  Google Scholar 

  7. Grootjans, J., Hodin, C. M., de Haan, J. J., Derikx, J. P., Rouschop, K. M., Verheyen, F. K., van Dam, R. M., Dejong, C. H., Buurman, W. A., & Lenaerts, K. (2011). Level of activation of the unfolded protein response correlates with Paneth cell apoptosis in human small intestine exposed to ischemia/reperfusion. Gastroenterology, 140, 529-539.e523.

    Article  CAS  Google Scholar 

  8. Mastoraki, A., Mastoraki, S., Tziava, E., Touloumi, S., Krinos, N., Danias, N., Lazaris, A., & Arkadopoulos, N. (2016). Mesenteric ischemia: Pathogenesis and challenging diagnostic and therapeutic modalities. World J Gastrointest Pathophysiol, 7, 125–130.

    Article  Google Scholar 

  9. Fahrner, M., Föll, M. C., Grüning, B. A., Bernt, M., Röst, H. and Schilling, O. (2022) Democratizing data-independent acquisition proteomics analysis on public cloud infrastructures via the Galaxy framework. Gigascience, 11.

  10. Li, Y. S., Wang, Z. X., Li, C., Xu, M., Li, Y., Huang, W. Q., Xia, Z., & Liu, K. X. (2010). Proteomics of ischemia/reperfusion injury in rat intestine with and without ischemic postconditioning. Journal of Surgical Research, 164, e173-180.

    Article  CAS  Google Scholar 

  11. Liu, K. X., Li, C., Li, Y. S., Yuan, B. L., Xu, M., Xia, Z., & Huang, W. Q. (2010). Proteomic analysis of intestinal ischemia/reperfusion injury and ischemic preconditioning in rats reveals the protective role of aldose reductase. Proteomics, 10, 4463–4475.

    Article  CAS  Google Scholar 

  12. Wen, S. H., Ling, Y. H., Li, Y., Li, C., Liu, J. X., Li, Y. S., Yao, X., Xia, Z. Q., & Liu, K. X. (2013). Ischemic postconditioning during reperfusion attenuates oxidative stress and intestinal mucosal apoptosis induced by intestinal ischemia/reperfusion via aldose reductase. Surgery, 153, 555–564.

    Article  Google Scholar 

  13. Kip, A. M., Valverde, J. M., Altelaar, M., Heeren, R. M. A., Hundscheid, I. H. R., Dejong, C. H. C., Olde Damink, S. W. M., Balluff, B., & Lenaerts, K. (2022). Combined quantitative (phospho)proteomics and mass spectrometry imaging reveal temporal and spatial protein changes in human intestinal ischemia-reperfusion. Journal of Proteome Research, 21, 49–66.

    Article  CAS  Google Scholar 

  14. Kip, A. M., Soons, Z., Mohren, R., Duivenvoorden, A. A. M., Röth, A. A. J., Cillero-Pastor, B., Neumann, U. P., Dejong, C. H. C., Heeren, R. M. A., Olde Damink, S. W. M., & Lenaerts, K. (2021). Proteomics analysis of human intestinal organoids during hypoxia and reoxygenation as a model to study ischemia-reperfusion injury. Cell Death & Disease, 12, 95.

    Article  CAS  Google Scholar 

  15. Wang, B., Qu, X. L., & Chen, Y. (2019). Identification of the potential prognostic genes of human melanoma. Journal of Cellular Physiology, 234, 9810–9815.

    Article  CAS  Google Scholar 

  16. Xie, F., Wang, M., Su, Y., Xiao, K., Chu, X., Long, S., Li, L., Zhang, X., Xue, P., & Zhu, S. (2022). Unveiling potential mechanisms of Spatholobi Caulis against lung metastasis of malignant tumor by network pharmacology and molecular docking. Evid Based Complement Alternat Med, 2022, 1620539.

    PubMed  PubMed Central  Google Scholar 

  17. Lu, X., Li, Y., Simovic, M. O., Peckham, R., Wang, Y., Tsokos, G. C., & Dalle Lucca, J. J. (2011). Decay-accelerating factor attenuates C-reactive protein-potentiated tissue injury after mesenteric ischemia/reperfusion. Journal of Surgical Research, 167, e103-115.

    Article  CAS  Google Scholar 

  18. Rehm, S. R. T., Smirnova, N. F., Morrone, C., Götzfried, J., Feuchtinger, A., Pedersen, J., Korkmaz, B., Yildirim, A., & Jenne, D. E. (2019). Premedication with a cathepsin C inhibitor alleviates early primary graft dysfunction in mouse recipients after lung transplantation. Science and Reports, 9, 9925.

    Article  Google Scholar 

  19. Fang, H., Liu, A., Dirsch, O., & Dahmen, U. (2013). Liver transplantation and inflammation: Is lipopolysaccharide binding protein the link? Cytokine, 64, 71–78.

    Article  CAS  Google Scholar 

  20. Kong, J., Zhang, Z. Y., Musch, M. W., Ning, G., Sun, J., Hart, J., Bissonnette, M., & Li, Y. C. (2008). Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol-Gastr L, 294, G208–G216.

    CAS  Google Scholar 

  21. Gu, L. L., Li, N., Yu, W. K., Gong, J. F., Li, Q. R., Zhu, W. M., & Li, J. S. (2013). Berberine reduces rat intestinal tight junction injury induced by ischemia-reperfusion associated with the suppression of inducible nitric oxide synthesis. Am J Chinese Med, 41, 1297–1312.

    Article  CAS  Google Scholar 

  22. Watson, A. J. M., Chu, S. Y., Sieck, L., Gerasimenko, O., Bullen, T., Campbell, F., McKenna, M., Rose, T., & Montrose, M. H. (2005). Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. Gastroenterology, 129, 902–912.

    Article  Google Scholar 

  23. Wu, C., Wang, X. Y., Jiang, T. T., Li, C. J., Zhang, L., Gao, X. J., Tian, F., Li, N. and Li, J. S. (2016) Partial enteral nutrition mitigated ischemia/reperfusion-induced damage of rat small intestinal barrier. Nutrients, 8.

  24. Suzuki, T. (2020) Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim Sci J, 91.

  25. Evennett, N., Cerigioni, E., Hall, N. J., Pierro, A., & Eaton, S. (2014). Smooth muscle actin as a novel serologic marker of severe intestinal damage in rat intestinal ischemia-reperfusion and human necrotising enterocolitis. Journal of Surgical Research, 191, 323–330.

    Article  CAS  Google Scholar 

  26. Shi, T., Moulton, V. R., Lapchak, P. H., Deng, G. M., Dalle Lucca, J. J., & Tsokos, G. C. (2009). Ischemia-mediated aggregation of the actin cytoskeleton is one of the major initial events resulting in ischemia-reperfusion injury. American Journal of Physiology. Gastrointestinal and Liver Physiology, 296, G339-347.

    Article  CAS  Google Scholar 

  27. Deng, F., Zhang, L.-Q., Wu, H., Chen, Y., Yu, W.-Q., Han, R.-H., Han, Y., Zhang, X.-Q., Sun, Q.-S., Lin, Z.-B., Wang, Y., Liu, Y.-P., Chen, J.-Y., Liu, K.-X., & Hu, J.-J. (2022). Propionate alleviates myocardial ischemia-reperfusion injury aggravated by angiotensin II dependent on caveolin-1/ACE2 axis through GPR41. International Journal of Biological Sciences, 18, 858–872.

    Article  CAS  Google Scholar 

  28. Jin, Y., & Blikslager, A. T. (2016). Myosin light chain kinase mediates intestinal barrier dysfunction via occludin endocytosis during anoxia/reoxygenation injury. American Journal of Physiology. Cell Physiology, 311, C996-c1004.

    Article  Google Scholar 

  29. Karimi, A., & Milewicz, D. M. (2016). Structure of the elastin-contractile units in the thoracic aorta and how genes that cause thoracic aortic aneurysms and dissections disrupt this structure. Canadian Journal of Cardiology, 32, 26–34.

    Article  Google Scholar 

  30. Yokoyama, M., Kimura, M. Y., Ito, T., Hayashizaki, K., Endo, Y., Wang, Y., Yagi, R., Nakagawa, T., Kato, N., Matsubara, H., & Nakayama, T. (2020). Myosin light chain 9/12 regulates the pathogenesis of inflammatory bowel disease. Frontiers in Immunology, 11, 594297.

    Article  CAS  Google Scholar 

  31. Liu, S. Z., He, X. M., Zhang, X., Zeng, F. C., Wang, F., & Zhou, X. Y. (2017). Ischemic preconditioning-induced SOCS-1 protects rat intestinal ischemia reperfusion injury via degradation of TRAF6. Digestive Diseases and Sciences, 62, 105–114.

    Article  CAS  Google Scholar 

  32. Li, Y., Feng, D., Wang, Z., Zhao, Y., Sun, R., Tian, D., Liu, D., Zhang, F., Ning, S., Yao, J., & Tian, X. (2019). Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death and Differentiation, 26, 2284–2299.

    Article  CAS  Google Scholar 

  33. Mabrouk, N., Lecoeur, B., Bettaieb, A., Paul, C. and Vegran, F. (2022) Impact of lipid metabolism on antitumor immune response. Cancers, 14.

  34. Castoldi, A., Monteiro, L. B., Bakker, N. V., Sanin, D. E., Rana, N., Corrado, M., Cameron, A. M., Hassler, F., Matsushita, M., Caputa, G., Geltink, R. I. K., Buscher, J., Edwards-Hicks, J., Pearce, E. L. and Pearce, E. J. (2020) Triacylglycerol synthesis enhances macrophage inflammatory function. Nat Commun, 11.

  35. Hung, Y. H., Carreiro, A. L., & Buhman, K. K. (2017). Dgat1 and Dgat2 regulate enterocyte triacylglycerol distribution and alter proteins associated with cytoplasmic lipid droplets in response to dietary fat. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 1862, 600–614.

    Article  CAS  Google Scholar 

  36. Funken, D., Yu, Y., Feng, X., Imvised, T., Gueler, F., Prinz, I., Madadi-Sanjani, O., Ure, B. M., Kuebler, J. F., & Klemann, C. (2021). Lack of gamma delta T cells ameliorates inflammatory response after acute intestinal ischemia reperfusion in mice. Science and Reports, 11, 18628.

    Article  CAS  Google Scholar 

  37. Campos, M. A., Rosinha, G. M., Almeida, I. C., Salgueiro, X. S., Jarvis, B. W., Splitter, G. A., Qureshi, N., Bruna-Romero, O., Gazzinelli, R. T., & Oliveira, S. C. (2004). Role of Toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice. Infection and Immunity, 72, 176–186.

    Article  CAS  Google Scholar 

  38. Aldrich, M. B., & Sevick-Muraca, E. M. (2013). Cytokines are systemic effectors of lymphatic function in acute inflammation. Cytokine, 64, 362–369.

    Article  CAS  Google Scholar 

  39. Wu, H., Deng, Y. Y., Liu, L., Tan, Q. H., Wang, C. H., Guo, M. M., Xie, Y. M., & Tang, C. W. (2014). Intestinal ischemia-reperfusion of macaques triggers a strong innate immune response. World Journal of Gastroenterology, 20, 15327–15334.

    Article  CAS  Google Scholar 

  40. Kodiha, M., Chu, A., Matusiewicz, N., & Stochaj, U. (2004). Multiple mechanisms promote the inhibition of classical nuclear import upon exposure to severe oxidative stress. Cell Death & Differentiation, 11, 862–874.

    Article  CAS  Google Scholar 

  41. Schwartz, M. A., & DeSimone, D. W. (2008). Cell adhesion receptors in mechanotransduction. Current Opinion in Cell Biology, 20, 551–556.

    Article  CAS  Google Scholar 

  42. Petit, V., & Thiery, J. P. (2000). Focal adhesions: Structure and dynamics. Biology of the Cell, 92, 477–494.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 81801943), the Science and Technology Commission of Shanghai Municipality (No.18411970200), the Shanghai Pujiang Program (No. 21PJD009), and the Medical and Health Science and Technology Innovation Fund Project in Jinshan District, Shanghai (No.2020–3-19).

Author information

Authors and Affiliations

Authors

Contributions

JBQ, MZ, and LZ conceived and designed the research; AZH collected the data used in our study; AZH and WW analyzed the data; AZH, SC, and HBH draw the figures; WW and JS wrote the manuscript; and MZ and LZ approved the final version of manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jingbo Qie, Ming Zhong or Lin Zhang.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Shanghai Medical College of Fudan University.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 67 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, A., Wu, W., Chen, S. et al. Data-Independent Acquisition-Based Mass Spectrometry (DIA-MS) for Quantitative Analysis of Human Intestinal Ischemia/Reperfusion. Appl Biochem Biotechnol 194, 4156–4168 (2022). https://doi.org/10.1007/s12010-022-04005-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04005-4

Keywords

Navigation