Skip to main content
Log in

Cell-Free Supernatant of Bacillus thuringiensis Displays Anti-Biofilm Activity Against Staphylococcus aureus

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus is an important bacterial pathogen responsible for biofilm formation in medical devices. Due to the increasing antibiotic resistance of S. aureus, it is necessary to search for new anti-biofilm agents. In this study, the cell-free supernatant of Bacillus thuringiensis inhibited biofilm formation up to 93% and dispersed biofilms up to 83% without affecting the growth of S. aureus. The ethyl acetate extract of B. thuringiensis cell-free supernatant exhibited a dose-dependent anti-biofilm activity against S. aureus with the biofilm inhibition concentration ranging from 8 to 64 µg/mL. Scanning electron microscopy revealed that the cell-free supernatant extract of B. thuringiensis resulted in a significant reduction in S. aureus biofilms. The ethyl acetate extract of cell-free supernatant of B. thuringiensis was found to contain various compounds with structural similarity to known anti-biofilm compounds. In particular, squalene, cinnamic acid derivatives, and eicosapentaene seem to act synergistically against S. aureus biofilms. Hence, B. thuringiensis cell-free supernatant proved to be effective against S. aureus biofilms. The results clearly show the potential of natural molecules produced by B. thuringiensis as alternative therapies with anti-biofilm activity instead of bactericidal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this article.

References

  1. Miquel, S., Lagrafeuille, R., Souweine, B., & Forestier, C. (2016). Anti-biofilm activity as a health issue. Frontiers in Microbiology, 7, 1–14.

    Article  Google Scholar 

  2. Kumar, P., Lee, J.-H., Beyenal, H., & Lee, J. (2020). Fatty acids as antibiofilm and antivirulence agents. Trends in Microbiology, 28, 753–768.

    Article  CAS  PubMed  Google Scholar 

  3. S, Balasubramanian., E.M., Othman., D, Kampik., H, Stopper., U, Hentschel., W, Ziebuhr., T.A., Oelschlaeger., & U.R., Abdelmohsen. (2017). Marine sponge-derived Streptomyces sp. SBT343 extract inhibits staphylococcal biofilm formation. Frontiers in Microbiol, 8.

  4. Bryers, J. D. (2008). Medical biofilms. Biotechnology and Bioengineering, 100, 1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arciola, C. R., Campoccia, D., & Montanaro, L. (2018). Implant infections: Adhesion, biofilm formation and immune evasion. Nature Reviews Microbiol, 16, 397–409.

    Article  CAS  Google Scholar 

  6. Ricciardi, B. F., Muthukrishnan, G., Masters, E., Ninomiya, M., Lee, C. C., & Schwarz, E. M. (2018). Staphylococcus aureus evasion of host immunity in the setting of prosthetic joint infection: Biofilm and beyond. Current Reviews in Musculoskeletal Medicine, 11, 389–400.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. Int Journal of Antimicrobial Agents, 35, 322–332.

    Article  Google Scholar 

  8. Bakkiyaraj, D., & Karutha Pandian, S. T. (2010). In vitro and in vivo antibiofilm activity of a coral associated actinomycete against drug resistant Staphylococcus aureus biofilms. Biofouling, 26, 711–717.

    Article  CAS  PubMed  Google Scholar 

  9. de Oliveira Nunes, S., da Silva Rosa, H., Canellas, A.-L.-B., Romanos, M.-T.-V., dos Santos, K.-R.-N., Muricy, G., Oelemann, W.-M.-R., & Laport, M.-S. (2021). High reduction of staphylococcal biofilm by aqueous extract from marine sponge-isolated Enterobacter sp. Research in Microbiol, 172, 103787.

    Article  Google Scholar 

  10. Hamza, F., Kumar, A. R., & Zinjarde, S. (2016). Antibiofilm potential of a tropical marine Bacillus licheniformis isolate: Role in disruption of aquaculture associated biofilms. Aquaculture Research, 47, 2661–2669.

    Article  CAS  Google Scholar 

  11. Rajivgandhi, G. N., Ramachandran, G., Maruthupandy, M., Manoharan, N., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., Almanaa, T. N., & Li, W.-J. (2020). Anti-oxidant, anti-bacterial and anti-biofilm activity of biosynthesized silver nanoparticles using Gracilaria corticata against biofilm producing K. pneumoniae. Colloids Surf Physicochem Eng Aspects, 600, 124830.

    Article  CAS  Google Scholar 

  12. Lara, H.-H., Ixtepan-Turrent, L., Jose Yacaman, M., & Lopez-Ribot, J. (2020). Inhibition of Candida auris biofilm formation on medical and environmental surfaces by silver nanoparticles. ACS Applied Materials & Interfaces, 12, 21183–21191.

    Article  CAS  Google Scholar 

  13. Bahuguna, A., Joe, A.-R., Kumar, V., Lee, J.-S., Kim, S.-Y., Moon, J.-Y., Cho, S.-K., Cho, H., & Kim, M. (2020). Study on the identification methods for effective microorganisms in commercially available organic agriculture materials. Microorganisms, 8, 1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Otto, M. (2013). Staphylococcal infections: Mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annual Review of Medicine, 64, 175–188.

    Article  CAS  PubMed  Google Scholar 

  15. Farha, A.-K., Yang, Q.-Q., Kim, G., Zhang, D., Mavumengwana, V., Habimana, O., Li, H.-B., Corke, H., & Gan, R.-Y. (2020). Inhibition of multidrug-resistant foodborne Staphylococcus aureus biofilms by a natural terpenoid (+)-nootkatone and related molecular mechanism. Food Control, 112, 107154.

    Article  CAS  Google Scholar 

  16. Casillo, A., Papa, R., Ricciardelli, A., Sannino, F., Ziaco, M., Tilotta, M., Selan, L., Marino, G., Corsaro, M. M., Tutino, M. L., Artini, M., & Parrilli, E. (2017). Anti-biofilm activity of a long-chain fatty aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis biofilm. Front Cell Infect Microbio, 7, 1–13.

    Google Scholar 

  17. A, Di Somma., A, Moretta., C, Canè., A, Cirillo., & A, Duilio. (2020). Inhibition of bacterial biofilm formation, in: S, Dincer., M, Sümengen, Özdenefe, A., Arkut. (Eds.), Bacterial Biofilms, Intech Open.

  18. Voběrková, S., Hermanová, S., Hrubanová, K., & Krzyžánek, V. (2016). Biofilm formation and extracellular polymeric substances (EPS) production by Bacillus subtilis depending on nutritional conditions in the presence of polyester film. Folia Microbiologica, 61, 91–100.

    Article  PubMed  Google Scholar 

  19. R, Papa., L, Selan., E, Parrilli, M, Tilotta, F, Sannino, G, Feller., M-L, Tutino., & M, Artini. (2015). Anti-biofilm activities from marine cold adapted bacteria against Staphylococci and Pseudomonas aeruginosa. Frontiers in Microbiology, 6.

  20. Ricciardelli, A., Casillo, A., Papa, R., Monti, D.-M., Imbimbo, P., Vrenna, G., Artini, M., Selan, L., Corsaro, M.-M., Tutino, M.-L., & Parrilli, E. (2018). Pentadecanal inspired molecules as new anti-biofilm agents against Staphylococcus epidermidis. Biofouling, 34, 1110–1120.

    Article  CAS  PubMed  Google Scholar 

  21. Sri CharanBindu, B., Mishra, D.-P., & Narayan, B. (2015). Inhibition of virulence of Staphylococcus aureus - a food borne pathogen - by squalene, a functional lipid. J Funct Foods, 18, 224–234.

    Article  CAS  Google Scholar 

  22. Cheng, W.-J., Zhou, J.-W., Zhang, P.-P., Luo, H.-Z., Tang, S., Li, J.-J., Deng, S.-M., & Jia, A.-Q. (2020). Quorum sensing inhibition and tobramycin acceleration in Chromobacterium violaceum by two natural cinnamic acid derivatives. Applied Microbiology and Biotechnology, 104, 5025–5037.

    Article  CAS  PubMed  Google Scholar 

  23. Ryan, R.-P., An, S.-Q., Allan, J.-H., McCarthy, Y., & Dow, J.-M. (2015). The DSF family of cell–cell signals: An expanding class of bacterial virulence regulators. PLoS Pathogens, 11, e1004986.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Davies, D.-G., & Marques, C.-N.-H. (2009). A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. Journal of Bacteriology, 191, 1393–1403.

    Article  CAS  PubMed  Google Scholar 

  25. Jennings, J.-A., Courtney, H.-S., & Haggard, W.-O. (2012). Cis-2-decenoic acid inhibits S. aureus growth and biofilm in vitro: A pilot study. Clinical Orthopaedics and Related Research, 470, 2663–2670.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rahmani-Badi, A., Sepehr, S., Mohammadi, P., Soudi, M.-R., Babaie-Naiej, H., & Fallahi, H. (2014). A combination of cis-2-decenoic acid and antibiotics eradicates pre-established catheter-associated biofilms. Journal of Medical Microbiology, 63, 1509–1516.

    Article  PubMed  Google Scholar 

  27. Sepehr, S., Rahmani-Badi, A., Babaie-Naiej, H., & Soudi, M.-R. (2014). Unsaturated fatty acid, cis-2-decenoic acid, in combination with disinfectants or antibiotics removes pre-established biofilms formed by food-related bacteria. PLoS ONE, 9, e101677.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marques, C.-N.-H., Davies, D.-G., & Sauer, K. (2015). Control of biofilms with the fatty acid signaling molecule cis-2-decenoic acid. Pharmaceuticals, 8, 816–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guilhen, C., Forestier, C., & Balestrino, D. (2017). Biofilm dispersal: Multiple elaborate strategies for dissemination of bacteria with unique properties. Molecular Microbiology, 105, 188–210.

    Article  CAS  PubMed  Google Scholar 

  30. Vílchez, R., Lemme, A., Ballhausen, B., Thiel, V., Schulz, S., Jansen, R., Sztajer, H., & Wagner-Döbler, I. (2010). Streptococcus mutans inhibits Candida albicans hyphal formation by the fatty acid signaling molecule trans-2-decenoic acid (SDSF). Chem BioChem, 11, 1552–1562.

    Google Scholar 

  31. P, Huedo., X, Coves., X, Daura., I, Gibert., & D, Yero. (2018). Quorum sensing signaling and quenching in the multidrug-resistant pathogen Stenotrophomonas maltophilia, Frontiers in Cellular and Infection Microbiol, 8.

  32. Stenz, L., François, P., Fischer, A., Huyghe, A., Tangomo, M., Hernandez, D., Cassat, J., Linder, P., & Schrenzel, J. (2008). Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiology Letters, 287, 149–155.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta, A., Cheepurupalli, L., Vigneswaran, S., Singh Rathore, S., Suma Mohan, S., & Ramakrishnan, J. (2020). In vitro and in silico investigation of caprylic acid effect on multi drug resistant (MDR) Klebsiella pneumoniae biofilm. Journal of Biomolecular Structure and Dynamics, 38, 616–624.

    Article  CAS  PubMed  Google Scholar 

  34. Murzyn, A., Krasowska, A., Stefanowicz, P., Dziadkowiec, D., & Łukaszewicz, M. (2010). Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS One, 5, e12050.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mowat, E., Rajendran, R., Williams, C., McCulloch, E., Jones, B., Lang, S., & Ramage, G. (2010). Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation. FEMS Microbiology Letters, 313, 96–102.

    Article  CAS  PubMed  Google Scholar 

  36. http://grants.nih.gov/grants/guide/pa-files/PA-03–047.html (Accessed 07/09/2021). National Institute of Health, Research on Microbial Biofilms, 2002.

  37. Cruz, C. D., Shah, S., & Tammela, P. (2018). Defining conditions for biofilm inhibition and eradication assays for Gram-positive clinical reference strains. BMC Microbiology, 18(1), 1–9.

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea (NRF) funded by the Korean Government (NRF-2020R1A6A1A03044512).

Author information

Authors and Affiliations

Authors

Contributions

Subhasree Ray, conceptualization, methodology, validation, and writing original draft; Jun-O Jin, review and editing; Inho Choi, review and editing, funding acquisition, and project administration; Myunghee Kim, conceptualization, data analysis, resources, and supervision. Subhasree Ray carried out all the experiments and data collection and wrote the manuscript. All authors have read and approved the published version of the manuscript.

Corresponding author

Correspondence to Myunghee Kim.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors agreed to publish this article in Applied Biochemistry and Biotechnology.

Consent for Publication

All the authors listed have seen the manuscript and approved the submission to your journal. We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 505 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, S., Jin, JO., Choi, I. et al. Cell-Free Supernatant of Bacillus thuringiensis Displays Anti-Biofilm Activity Against Staphylococcus aureus. Appl Biochem Biotechnol 195, 5379–5393 (2023). https://doi.org/10.1007/s12010-022-03971-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03971-z

Keywords

Navigation