Skip to main content
Log in

Green Fabrication of Nonenzymatic Glucose Sensor Using Multi-Walled Carbon Nanotubes Decorated with Copper (II) Oxide Nanoparticles for Tear Fluid Analysis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this report, a green, simple, inexpensive, and effective nonenzymatic electrochemical glucose sensor was fabricated using multi-walled carbon nanotubes (MWCNT) decorated with copper (II) oxide nanoparticles (CuO NPs). Basil seed mucilage (BSM) was served as reducing, capping, and stabilizing agents in the synthesis of CuO NPs.

The prepared MWCNT/CuO nanocomposite was characterized using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and electrochemical methods. The FTIR results indicated that the nanocomposite surface was covered by BSM. The FESEM results show that the CuO NPs with an average particle size lower than 10 nm have been well distributed on the walls of the MWCNT. The electrochemical behavior of the nanocomposite was explored by studying the electrocatalytic behavior of the screen-printed carbon electrode (SPCE) modified by the nanocomposite (SPCE-MWCNT/CuO) toward the glucose oxidation. In the optimum conditions, the electrode indicated a wide linear response from 5.0 to 620.0 μM with regression coefficients of 0.992, the sensitivity of 1050 μA mM−1 cm−2, a limit of detection (LOD) of 1.7 μM, and a reproducibility with relative standard deviation (RSD) variations from 3.5 to 11% for three measurements at each point. The obtained results also showed good selectivity to glucose against interfering species such as lactate (LA), L-ascorbic acid (AA), and urea (U) due to the use of the negatively charged BSM in the form of a coating on the nanocomposite surface. The applicability of the sensor was successfully verified by the determination of glucose concentration in artificial tears with a certain amount of glucose.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chhiba, L., Zaher, B., Sidqui, M. and Marzak, A. (2019) Glucose sensing for diabetes monitoring: From invasive to wearable device. The Proceedings of the Third International Conference on Smart City Applications, 350–364. Springer.

  2. Sehit, E., & Altintas, Z. (2020). Significance of nanomaterials in electrochemical glucose sensors: An updated review (2016–2020). Biosensors and Bioelectronics, 159, 112165.

    Article  CAS  PubMed  Google Scholar 

  3. Raymundo-Pereira, P. A., Shimizu, F. M., Coelho, D., Piazzeta, M. H., Gobbi, A. L., Machado, S. A., & Oliveira, O. N., Jr. (2016). A nanostructured bifunctional platform for sensing of glucose biomarker in artificial saliva: Synergy in hybrid Pt/Au surfaces. Biosensors and Bioelectronics, 86, 369–376.

    Article  CAS  PubMed  Google Scholar 

  4. Teymourian, H., Barfidokht, A., & Wang, J. (2020). Electrochemical glucose sensors in diabetes management: An updated review (2010–2020). Chemical Society Reviews, 49, 7671–7709.

    Article  CAS  PubMed  Google Scholar 

  5. Chakraborty, P., Dhar, S., Deka, N., Debnath, K., & Mondal, S. P. (2020). Non-enzymatic salivary glucose detection using porous CuO nanostructures. Sensors and Actuators, B: Chemical, 302, 127134.

    Article  CAS  Google Scholar 

  6. Matzeu, G., Florea, L., & Diamond, D. (2015). Advances in wearable chemical sensor design for monitoring biological fluids. Sensors and Actuators B: Chemical, 211, 403–418.

    Article  CAS  Google Scholar 

  7. Strakosas, X., Selberg, J., Pansodtee, P., Yonas, N., Manapongpun, P., Teodorescu, M., & Rolandi, M. (2019). A non-enzymatic glucose sensor enabled by bioelectronic pH control. Scientific reports, 9, 1–7.

    Article  CAS  Google Scholar 

  8. Iguchi, S., Kudo, H., Saito, T., Ogawa, M., Saito, H., Otsuka, K., Funakubo, A., & Mitsubayashi, K. (2007). A flexible and wearable biosensor for tear glucose measurement. Biomedical microdevices, 9, 603–609.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, S., Zeng, W., Guo, Q. and Li, Y. (2020) Metal oxide-based composite for non-enzymatic glucose sensors. Journal of Materials Science: Materials in Electronics, 1–26.

  10. Wang, S., Zhao, L., Xu, R., Ma, Y., & Ma, L. (2019). Facile fabrication of biosensors based on Cu nanoparticles modified as-grown CVD graphene for non-enzymatic glucose sensing. Journal of Electroanalytical Chemistry, 853, 113527.

    Article  CAS  Google Scholar 

  11. Ashok, A., Kumar, A., & Tarlochan, F. (2019). Highly efficient nonenzymatic glucose sensors based on CuO nanoparticles. Applied Surface Science, 481, 712–722.

    Article  CAS  Google Scholar 

  12. Liu, B., & Liu, J. (2019). Sensors and biosensors based on metal oxide nanomaterials. TrAC Trends in Analytical Chemistry, 121, 115690.

    Article  CAS  Google Scholar 

  13. Yang, Z., & You, J. (2021). Synthesis of a three-dimensional porous Co3O4 network interconnected by MWCNTs and decorated with Au nanoparticles for enhanced nonenzymatic glucose sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612, 126064.

    Article  CAS  Google Scholar 

  14. Chen, M., Cao, X., Chang, K., Xiang, H., & Wang, R. (2021). A novel electrochemical non-enzymatic glucose sensor based on Au nanoparticle-modified indium tin oxide electrode and boronate affinity. Electrochimica Acta, 368, 137603.

    Article  CAS  Google Scholar 

  15. Sicard, L., Le Meins, J.-M., Methivier, C., Herbst, F., & Ammar, S. (2010). Polyol synthesis and magnetic study of Mn3O4 nanocrystals of tunable size. Journal of magnetism and magnetic materials, 322, 2634–2640.

    Article  CAS  Google Scholar 

  16. Wongwailikhit, K., & Horwongsakul, S. (2011). The preparation of iron (III) oxide nanoparticles using W/O microemulsion. Materials Letters, 65, 2820–2822.

    Article  CAS  Google Scholar 

  17. Gong, J., Li, S., Zhang, D., Zhang, X., Liu, C., & Tong, Z. (2010). High quality self-assembly magnetite (Fe 3 O 4) chain-like core-shell nanowires with luminescence synthesized by a facile one-pot hydrothermal process. Chemical Communications, 46, 3514–3516.

    Article  CAS  PubMed  Google Scholar 

  18. Mohanraj, V., & Chen, Y. (2006). Nanoparticles-A review. Tropical journal of pharmaceutical research, 5, 561–573.

    Google Scholar 

  19. Moghaddas, S. M. T. H., Elahi, B., & Javanbakht, V. (2020). Biosynthesis of pure zinc oxide nanoparticles using Quince seed mucilage for photocatalytic dye degradation. Journal of Alloys and Compounds, 821, 153519.

    Article  CAS  Google Scholar 

  20. Hussain, I., Singh, N., Singh, A., Singh, H., & Singh, S. (2016). Green synthesis of nanoparticles and its potential application. Biotechnology letters, 38, 545–560.

    Article  CAS  PubMed  Google Scholar 

  21. Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial cells, nanomedicine, and biotechnology, 47, 844–851.

    Article  CAS  PubMed  Google Scholar 

  22. Das, P., Ghosh, S., Ghosh, R., Dam, S., & Baskey, M. (2018). Madhuca longifolia plant mediated green synthesis of cupric oxide nanoparticles: A promising environmentally sustainable material for waste water treatment and efficient antibacterial agent. Journal of Photochemistry and Photobiology B: Biology, 189, 66–73.

    Article  CAS  Google Scholar 

  23. Rajalakshmi, B. S., Jenifer, A. A., Ahila, K., Vasanthy, M. and Thamaraiselvi, C. (2019), In waste management and resource efficiency, Springer, pp. 961–973.

  24. Singh, S., Kumar, N., Kumar, M., Agarwal, A., & Mizaikoff, B. (2017). Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chemical engineering journal, 313, 283–292.

    Article  CAS  Google Scholar 

  25. Nayak, R., Ali, F. A., Mishra, D. K., Ray, D., Aswal, V., Sahoo, S. K., & Nanda, B. (2020). Fabrication of CuO nanoparticle: An efficient catalyst utilized for sensing and degradation of phenol. Journal of Materials Research and Technology, 9, 11045–11059.

    Article  CAS  Google Scholar 

  26. Wu, Q., He, L., Jiang, Z. W., Li, Y., Cao, Z. M., Huang, C. Z., & Li, Y. F. (2019). CuO nanoparticles derived from metal-organic gel with excellent electrocatalytic and peroxidase-mimicking activities for glucose and cholesterol detection. Biosensors and Bioelectronics, 145, 111704.

    Article  CAS  PubMed  Google Scholar 

  27. Avinash, B., Ravikumar, C., Kumar, M. A., Nagaswarupa, H., Santosh, M., Bhatt, A. S., & Kuznetsov, D. (2019). Nano CuO: Electrochemical sensor for the determination of paracetamol and D-glucose. Journal of Physics and Chemistry of Solids, 134, 193–200.

    Article  CAS  Google Scholar 

  28. Zedan, A. F., Mohamed, A. T., El-Shall, M. S., AlQaradawi, S. Y., & AlJaber, A. S. (2018). Tailoring the reducibility and catalytic activity of CuO nanoparticles for low temperature CO oxidation. RSC advances, 8, 19499–19511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Şavk, A., Aydın, H., Cellat, K., & Şen, F. (2020). A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite. Journal of Molecular Liquids, 300, 112355.

    Article  CAS  Google Scholar 

  30. Lahcen, A. A., Rauf, S., Beduk, T., Durmus, C., Aljedaibi, A., Timur, S., Alshareef, H. N., Amine, A., Wolfbeis, O. S. and Salama, K. N. (2020) Electrochemical sensors and biosensors using laser-derived graphene: A comprehensive review. Biosensors and Bioelectronics, 112565.

  31. Mazaheri, M., Aashuri, H., & Simchi, A. (2017). Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors. Sensors and Actuators B: Chemical, 251, 462–471.

    Article  CAS  Google Scholar 

  32. Romanholo, P. V., Razzino, C. A., Raymundo-Pereira, P. A., Prado, T. M., Machado, S. A., & Sgobbi, L. F. (2021). Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosensors and Bioelectronics, 185, 113242.

    Article  CAS  PubMed  Google Scholar 

  33. Raymundo-Pereira, P. A., Gomes, N. O., Machado, S. A., & Oliveira, O. N., Jr. (2019). Simultaneous, ultrasensitive detection of hydroquinone, paracetamol and estradiol for quality control of tap water with a simple electrochemical method. Journal of Electroanalytical Chemistry, 848, 113319.

    Article  CAS  Google Scholar 

  34. Tian, Y., Liu, Y., Wang, W.-P., Zhang, X., & Peng, W. (2015). CuO nanoparticles on sulfur-doped graphene for nonenzymatic glucose sensing. Electrochimica acta, 156, 244–251.

    Article  CAS  Google Scholar 

  35. Vigneshvar, S., Sudhakumari, C., Senthilkumaran, B., & Prakash, H. (2016). Recent advances in biosensor technology for potential applications–An overview. Frontiers in bioengineering and biotechnology, 4, 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anjaneyalu, Y. V., & Gowda, D. C. (1979). Structural studies of an acidic polysaccharide from Ocimum basilicum seeds. Carbohydrate Research, 75, 251–256.

    Article  CAS  Google Scholar 

  37. Naji-Tabasi, S., & Razavi, S. M. A. (2017). Functional properties and applications of basil seed gum: An overview. Food Hydrocolloids, 73, 313–325.

    Article  CAS  Google Scholar 

  38. Rayegan, A., Allafchian, A., Sarsari, I. A., & Kameli, P. (2018). Synthesis and characterization of basil seed mucilage coated Fe3O4 magnetic nanoparticles as a drug carrier for the controlled delivery of cephalexin. International journal of biological macromolecules, 113, 317–328.

    Article  CAS  PubMed  Google Scholar 

  39. Moghaddas, S. M. T. H., Elahi, B., Darroudi, M., & Javanbakht, V. (2019). Green synthesis of hexagonal-shaped zinc oxide nanosheets using mucilage from flaxseed for removal of methylene blue from aqueous solution. Journal of Molecular Liquids, 296, 111834.

    Article  CAS  Google Scholar 

  40. Iram, F., Iqbal, M. S., Athar, M. M., Saeed, M. Z., Yasmeen, A., & Ahmad, R. (2014). Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study. Carbohydrate polymers, 104, 29–33.

    Article  CAS  PubMed  Google Scholar 

  41. Prasad, A. R., Garvasis, J., Oruvil, S. K., & Joseph, A. (2019). Bio-inspired green synthesis of zinc oxide nanoparticles using Abelmoschus esculentus mucilage and selective degradation of cationic dye pollutants. Journal of Physics and Chemistry of Solids, 127, 265–274.

    Article  CAS  Google Scholar 

  42. Anuradha, K., Bangal, P., & Madhavendra, S. S. (2016). Macromolecular arabinogalactan polysaccharide mediated synthesis of silver nanoparticles, characterization and evaluation. Macromolecular Research, 24, 152–162.

    Article  CAS  Google Scholar 

  43. Singh, A., Singh, N., Hussain, I., & Singh, H. (2017). Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. Journal of biotechnology, 262, 11–27.

    Article  CAS  PubMed  Google Scholar 

  44. Kurd, F., Fathi, M., & Shekarchizadeh, H. (2017). Basil seed mucilage as a new source for electrospinning: Production and physicochemical characterization. International journal of biological macromolecules, 95, 689–695.

    Article  CAS  PubMed  Google Scholar 

  45. Tantiwatcharothai, S., & Prachayawarakorn, J. (2019). Characterization of an antibacterial wound dressing from basil seed (Ocimum basilicum L.) mucilage-ZnO nanocomposite. International journal of biological macromolecules, 135, 133–140.

    Article  CAS  PubMed  Google Scholar 

  46. Hassan, K. H., Saadi, S. K., Jarullah, A. A., & Harris, P. (2018). Green synthesis and structural characterisation of CuO nanoparticles prepared by using fig leaves extract. Pakistan Journal of Scientific & Industrial Research Series A: Physical Sciences, 61, 59–65.

    Article  Google Scholar 

  47. Awwad, A., Albiss, B., & Salem, N. (2015). Antibacterial activity of synthesized copper oxide nanoparticles using Malva sylvestris leaf extract. SMU Medical Journal, 2, 91–101.

    Google Scholar 

  48. Sepasgozar, S. M. E., Mohseni, S., Feizyzadeh, B., & Morsali, A. (2021). Green synthesis of zinc oxide and copper oxide nanoparticles using Achillea Nobilis extract and evaluating their antioxidant and antibacterial properties. Bulletin of Materials Science, 44, 1–13.

    Article  CAS  Google Scholar 

  49. Wu, H.-X., Cao, W.-M., Li, Y., Liu, G., Wen, Y., Yang, H.-F., & Yang, S.-P. (2010). In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochimica Acta, 55, 3734–3740.

    Article  CAS  Google Scholar 

  50. Jiménez-Pérez, R., Iniesta, J., Baeza-Romero, M. T., & Valero, E. (2021). On the performance of carbon-based screen-printed electrodes for (in) organic hydroperoxides sensing in rainwater. Talanta, 234, 122699.

    Article  PubMed  CAS  Google Scholar 

  51. Di Carlo, G., Trani, A., Zane, D., Ingo, G. M., Pasquali, M., Dell’Era, A., & Curulli, A. (2014). Influence of different biological environments on serotonin (5-HT) electrochemical behavior at gold screen printed electrodes. Electroanalysis, 26, 1409–1418.

    Article  CAS  Google Scholar 

  52. Singh, P. K., Kumar, P., Hussain, M., Das, A. K., & Nayak, G. C. (2016). Synthesis and characterization of CuO nanoparticles using strong base electrolyte through electrochemical discharge process. Bulletin of Materials Science, 39, 469–478.

    Article  CAS  Google Scholar 

  53. Elango, M., Deepa, M., Subramanian, R., & Mohamed Musthafa, A. (2018). Synthesis, characterization, and antibacterial activity of polyindole/Ag–Cuo nanocomposites by reflux condensation method. Polymer-Plastics Technology and Engineering, 57, 1440–1451.

    Article  CAS  Google Scholar 

  54. Kayani, Z. N., Umer, M., Riaz, S., & Naseem, S. (2015). Characterization of copper oxide nanoparticles fabricated by the sol–gel method. Journal of Electronic Materials, 44, 3704–3709.

    Article  CAS  Google Scholar 

  55. do Amaral Montanheiro, T. L., Cristóvan, F. H., Machado, J. P. B., Tada, D. B., Durán, N. and Lemes, A. P. (2015) Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites. Journal of Materials Research, 30, 55-65

  56. Yudianti, R., Onggo, H., Saito, Y., Iwata, T. and Azuma, J.-i. (2011) Analysis of functional group sited on multi-wall carbon nanotube surface. The Open Materials Science Journal, 5.

  57. Javanbakht, V., & Shafiei, R. (2020). Preparation and performance of alginate/basil seed mucilage biocomposite for removal of eriochrome black T dye from aqueous solution. International journal of biological macromolecules, 152, 990–1001.

    Article  PubMed  CAS  Google Scholar 

  58. Shinde, S., Dubal, D., Ghodake, G., Kim, D., & Fulari, V. (2014). Nanoflower-like CuO/Cu (OH) 2 hybrid thin films: Synthesis and electrochemical supercapacitive properties. Journal of Electroanalytical Chemistry, 732, 80–85.

    Article  CAS  Google Scholar 

  59. Schlur, L., Bonnot, K., & Spitzer, D. (2015). Synthesis of Cu (OH) 2 and CuO nanotubes arrays on a silicon wafer. Rsc Advances, 5, 6061–6070.

    Article  CAS  Google Scholar 

  60. Umar, A., Rahman, M., Al-Hajry, A., & Hahn, Y.-B. (2009). Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets. Electrochemistry Communications, 11, 278–281.

    Article  CAS  Google Scholar 

  61. Li, Y., Wei, Y., Shi, G., Xian, Y., & Jin, L. (2011). Facile synthesis of leaf-like CuO nanoparticles and their application on glucose biosensor. Electroanalysis, 23, 497–502.

    Article  CAS  Google Scholar 

  62. Yuan, R.-M., Li, H.-J., Yin, X.-M., Lu, J.-H., & Zhang, L.-L. (2017). 3D CuO nanosheet wrapped nanofilm grown on Cu foil for high-performance non-enzymatic glucose biosensor electrode. Talanta, 174, 514–520.

    Article  CAS  PubMed  Google Scholar 

  63. Jiang, L.-C., & Zhang, W.-D. (2010). A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosensors and Bioelectronics, 25, 1402–1407.

    Article  CAS  PubMed  Google Scholar 

  64. Tang, Y., Liu, Q., Jiang, Z., Yang, X., Wei, M., & Zhang, M. (2017). Nonenzymatic glucose sensor based on icosahedron AuPd@ CuO core shell nanoparticles and MWCNT. Sensors and Actuators B: Chemical, 251, 1096–1103.

    Article  CAS  Google Scholar 

  65. Cao, F., & Gong, J. (2012). Nonenzymatic glucose sensor based on CuO microfibers composed of CuO nanoparticles. Analytica Chimica Acta, 723, 39–44.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, J., Chen, L., & Yang, K. (2019). In situ synthesis of CuO nanoparticles decorated hierarchical Ce-metal-organic framework nanocomposite for an ultrasensitive non-enzymatic glucose sensor. Ionics, 25, 4447–4457.

    Article  CAS  Google Scholar 

  67. Bindumadhavan, K., Srivastava, S. K., & Mahanty, S. (2013). MoS 2–MWCNT hybrids as a superior anode in lithium-ion batteries. Chemical Communications, 49, 1823–1825.

    Article  CAS  PubMed  Google Scholar 

  68. Wang, Y., Su, X., & Lu, S. (2012). Shape-controlled synthesis of TiO 2 hollow structures and their application in lithium batteries. Journal of Materials Chemistry, 22, 1969–1976.

    Article  CAS  Google Scholar 

  69. Shervedani, R. K., Ansarifar, E., & Foroushani, M. S. (2016). Electrocatalytic activities of graphene/nile blue nanocomposite toward determination of hydrogen peroxide and nitrite ion. Electroanalysis, 28, 1957–1969.

    Article  CAS  Google Scholar 

  70. Shervedani, R. K., & Foroushani, M. S. (2014). Direct electrochemistry of cytochrome c immobilized on gold electrode surface via Zr (IV) ion glue and its activity for ascorbic acid. Bioelectrochemistry, 98, 53–63.

    Article  CAS  PubMed  Google Scholar 

  71. Romeo, A., Moya, A., Leung, T. S., Gabriel, G., Villa, R., & Sanchez, S. (2018). Inkjet printed flexible non-enzymatic glucose sensor for tear fluid analysis. Applied Materials Today, 10, 133–141.

    Article  Google Scholar 

  72. Vaidya, R., Atanasov, P., & Wilkins, E. (1995). Effect of interference on the performance of glucose enzyme electrodes using Nafion® coatings. Medical Engineering & Physics, 17, 416–424.

    Article  CAS  Google Scholar 

  73. Cao, F., Guo, S., Ma, H., Yang, G., Yang, S., & Gong, J. (2011). Highly sensitive nonenzymatic glucose sensor based on electrospun copper oxide-doped nickel oxide composite microfibers. Talanta, 86, 214–220.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the University of Isfahan and Roshan Rai Sepahan Ltd. for providing research facilities.

Author information

Authors and Affiliations

Authors

Contributions

Zahra Asgari Kheirabadi and Marzieh Samiei Foroushani performed the experiments. Mohsen Rabbani and Marzieh Samiei Foroushani were involved in planning and supervising the work, and both Zahra Asgari Kheirabadi and Marzieh Samiei Foroushani processed the experimental data, performed the analysis, drafted the manuscript, and designed the figures.

Corresponding author

Correspondence to Mohsen Rabbani.

Ethics declarations

Ethics Approval

This research does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

This research does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1824 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari Kheirabadi, Z., Rabbani, M. & Samiei Foroushani, M. Green Fabrication of Nonenzymatic Glucose Sensor Using Multi-Walled Carbon Nanotubes Decorated with Copper (II) Oxide Nanoparticles for Tear Fluid Analysis. Appl Biochem Biotechnol 194, 3689–3705 (2022). https://doi.org/10.1007/s12010-022-03936-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03936-2

Keywords

Navigation