Skip to main content

Advertisement

Log in

Amelioration Effect of Salicylic Acid Under Salt Stress in Sorghum bicolor L.

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 18 April 2022

This article has been updated

Abstract

Salinity is a major abiotic stress, limiting plant growth and agriculture productivity worldwide. Salicylic acid is known to alleviate the negative effects of salinity. The present study demonstrated the impact of SA on sorghum, a moderately salt-tolerant crop, grown for food, fodder, fiber, and fuel. A screen house experiment was conducted using sorghum genotypes Haryana Jowar HJ 513 and HJ 541 under 4 salt levels (0, 5.0, 7.5, and 10.0 dS m−1 NaCl) and 3 SA (0, 25, and 50 mg dm−3) levels with 12 combinations. The leaves were assayed for electrolyte leakage percentage (ELP), i.e., 88.7 % in HJ 541 and 87.2 % in HJ 513, and osmolyte content. Proline content, total soluble carbohydrate content, and glycine betaine content increased considerably. Photosynthetic rate, transpiration rate, and stomatal conductance declined at higher salt levels. The specific enzymatic activities of SOD, CAT, and POX increased 41.1 %, 122.0 %, and 72.8 %, respectively, in HJ 513 under salt stress. Combinations of salt treatment and SA decreased ELP and enhanced osmolyte concentration, rates of gaseous exchange attributes, and also the antioxidant enzymatic activity in salt-stressed leaves. The study established that the specific activity of antioxidative enzymes is enhanced further by addition of SA which may protect the cells from oxidative damage under salt stress, thus mitigating salt stress and enhancing the yield of sorghum. SA can ameliorate the salt stress in plants by affecting the metabolic or physiological frameworks. SA application is an effective management strategy towards mitigating salt stress in order to meet agricultural production and sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No separate data available with the authors.

Change history

Abbreviations

ANOVA:

Analysis of variance

CAT:

Catalase

CRD:

Complete randomized design

DAS:

Days after sowing

EC:

Electrical conductivity

ELP:

Electrolyte leakage percentage

H2O2 :

Hydrogen peroxide

NUE:

Nutrient use efficiency

POX:

Peroxidase

ROS:

Reactive oxygen species

SA:

Salicylic acid

SOD:

Superoxide dismutase

SPSS:

Statistical Package for the Social Sciences

References

  1. Gite, A. G., Kute, N. S., & Patil, V. R. (2015). Heterosis studies for yield and component traits in rabi sorghum [Sorghum bicolor (L.) Moench. J. Global Biosc., 4(8), 3207–3219.

    Google Scholar 

  2. El-Esawi, M. A., Elansary, H. O., El-Shanhorey, N. A., Abdel-Hamid, A. M., Ali, H. M., & Elshikh, M. S. (2017). Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Front. Physiol., 8, 716.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liang, Y., Shen, Q., Shen, Z., & Ma, T. (1996). Effects of silicon on salinity tolerance of two barley cultivars. J. Pl. Nutr., 19(1), 173–183.

    Article  CAS  Google Scholar 

  4. Mandal, A. K., & Paron, P. (2016). Mapping and characterization of salt-affected and waterlogged soils in the Gangetic plain of central Haryana (India) for reclamation and management. Cogent. Geosci., 2, 1.

    Article  Google Scholar 

  5. Devi, S., Talwar, H., Singh, S., Ramprakash Goyal, V., Goyal, M., & Kumar, N. (2018). Physiological variability of sorghum (Sorghum bicolour L. Moench) under salt stress. Forage Res., 44, 101–104.

    Google Scholar 

  6. Chinchmalatpure, Anil & Sethi, Madhurama & Kumar, Parveen & Meena, Murli & Surya, Jaya & Khurana, Maulik & Bishnoi, Sita Ram & Jangra, Sunil & Yadav, Anil & Yadav, Rajender. (2018). Assessment and Mapping of Salt Affected Soils using Remote Sensing and GIS in Southern Districts of Haryana State.

  7. Misra, A. N., Sahu, S. M., Misra, M., Singh, P., Meera, I., Das, N., Kar, M., & Shau, P. (1997). Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biol. Plant., 39, 257–262.

    Article  Google Scholar 

  8. Saxena, R., Kumar, M., & Tomar, R. S. (2019). Plant responses and resilience towards drought and salinity stress. Plant Archives, 12(2), 50–58.

    Google Scholar 

  9. Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effect on plants. Ecotox. Environ. Safe, 60(3), 324–349.

    Article  CAS  Google Scholar 

  10. Iqbal, M., & Ashraf, M. (2007). Seed treatment with auxins modulates growth and ion partitioning in salt stressed wheat plants. J. Integr. Pl. Biol., 49(7), 1003–1015.

    Article  CAS  Google Scholar 

  11. Kaya, C., Kirnak, H., Higgs, D., & Saltali, K. (2002). Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high salinity. Scientia Horticulturae, 93, 65–74.

    Article  CAS  Google Scholar 

  12. Khodary, S. E. A. (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int. J. Agric. & Biol., 6, 5–8.

    CAS  Google Scholar 

  13. Yildirim, E., Turan, M., & Guvenc, I. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll and mineral content of cucumber (Cucumis sativus L.) grown under salt stress. J. Pl. Nutr., 31, 593–612.

    Article  CAS  Google Scholar 

  14. Kováˇcik, J., Grúz, J., Baˇckor, M., Strnad, M., & Repˇcák, M. (2009). Salicylic acid induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Pl. Cell Rep., 28, 135–143.

    Article  CAS  Google Scholar 

  15. Jogawat, A. (2019) Osmolytes and their role in abiotic stress tolerance in plants, In. Molecular PlantAbiotic Stress: Biology and Biotechnology Chapter 5 John Wiley & Sons Ltd

  16. Yadu, S., Dewangan, T. L., Chandrakar, V., & Keshavkant, S. (2017). Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. Physiol. Mol. Biol. Pl., 23(1), 43–58.

    Article  CAS  Google Scholar 

  17. Soni, P. G., Basak, N., Rai, A. K., et al. (2021). Deficit saline water irrigation under reduced tillage and residue mulch improves soil health in sorghum-wheat cropping system in semi-arid region. Sci Rep, 11, 1880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dehnavi, A. R., Zahedi, M., Razmjoo, J., & Eshghizadeh, H. (2019). Effect of exogenous application of salicylic acid on salt-stressed sorghum growth and nutrient contents. J. Pl. Nutr., 42(11-12), 1333–1349.

    Article  CAS  Google Scholar 

  19. Nimir, N. E. A., Zhou, G., Guo, W., Ma, B., Lu, S., & Wang, Y. (2017). Effect of foliar application of GA3, kinetin, and salicylic acid on ions content, membrane permeability, and photosynthesis stress of sweet sorghum [Sorghum bicolor (L.) Moench]. Canad. J. Pl. Sci., 97(3), 525–535.

    CAS  Google Scholar 

  20. Sui, N., Yang, Z., Liu, M., & Wang, B. (2015). Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genomics, 16, 534. https://doi.org/10.1186/s12864-015-1760-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, Z., Zheng, H., Wei, X., Song, J., Wang, B., & Sui, N. (2018). Transcriptome analysis of sweet Sorghum inbred lines differing in salt tolerance provides novel insights into salt exclusion by roots. Plant Soil, 430, 423–439. https://doi.org/10.1007/s11104-018-3736-0.

    Article  CAS  Google Scholar 

  22. Almodares, A., Hadi, M. R., Kholdebarin, B., Samedani, B., & Kharazian, Z. A. (2014). The response of sweet sorghum cultivars to salt stress and accumulation of Na+, Cl– and K+ ions in relation to salinity. J. Environ. Biol, 35, 733–739.

    CAS  PubMed  Google Scholar 

  23. Husen, A., Iqbal, M., Sohrab, S. S., et al. (2018). Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata. Br.). Agric. & Food Security, 7, 44. https://doi.org/10.1186/s40066-018-0194-0.

    Article  Google Scholar 

  24. Jindal, Y., Sehrawat, S. K., Chhabra, A. K., Kumar, N., Kumar, S., Kumar, S., Yadav, S. S., Dahiya, M., & Niwas, R. (Eds.). (2021). Varieties of CCSHAU: Continued efforts towards food security (pp. 152). University publication No. CCSHAU/PUB#21-058. Dorex Offset Printers.

  25. Pandey, K. C., & Roy, A. K. (2011). Forage Crops Varieties. IGFRI Jhansi (India).

  26. Hoagland, D. R., & Arnon, D. I. (1950). The water culture method for growing plants without soil. - California Agricultural Experimental Station Circular (pp. 1–32). University of California.

    Google Scholar 

  27. Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. - In Agriculture Handbook; USDA -Washington DC (p. 60).

    Google Scholar 

  28. Guimarães, M. J. M., Simões Welson, L., Oliveira Anderson, R., de, A., Gherman, G. L., de, S., et al. (2019). Biometrics and grain yield of sorghum varieties irrigated with salt water. Revista Brasileirade Engenharia Agrícolae Ambiental, 23(4), 285–290. https://doi.org/10.1590/1807-1929/agriambi.v23n4p285-290.

  29. Tabatabaei, S. A., & Anagholi, A. (2012). Effects of salinity on some characteristics of forage sorghum genotypes at germination stage. - Int. J. Agric. & Crop Sci., 4(14), 979–983. http://ijagcs.com/wpcontent/uploads/2012/09/979-983.pdf.

    Google Scholar 

  30. Sullivan, C. Y., & Ross, W. M. (1979). Selecting for drought and heat resistance in grain sorghum. In H. Mussell & R. C. Staples (Eds.), Stress physiology in crop plants (pp. 263–281). John Wiley and Sons.

    Google Scholar 

  31. Bates, L., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  32. Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrate in the plant extract by anthrone reagent. J. Biochem., 57, 508–514.

    Article  CAS  Google Scholar 

  33. Grieve, C. M., & Grattan, S. R. (1983). Rapid Assay for Determination of Water Soluble Quaternary Ammonium Compounds. Plant and Soil, 70, 303–307.

    Article  CAS  Google Scholar 

  34. Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Pl. Physiol., 59, 309–314.

    Article  CAS  Google Scholar 

  35. Aebi, H.E. (1983) Methods of Enzymatic Analysis. Verlagsgesellschaft GmbH - In: Bergmeyer, H.U., Bergmeyer, J., Grabi, M. (eds.) - Germany, pp. 273-282

  36. Siegel, B.Z. and Siegel, S.M.(1986)Peroxidase activity and stress factors: a complex relationship - In: Molecular and Physiological Aspects of Plant Peroxidases, eds. Greppin, H., Penel, C. and Gaspar, T.H.,-University of Geneva- Geneva, pp. 427-431

  37. Sheoran, O.P. (1995) Statistical Package for Agricultural Scientists (OPSTAT) - CCSHAU, Hisar. http://www.202.141.47.5/opstat/index.aspPapageorgiou, G.C. and Morata, N.

  38. Sun, Y., Niu, G., Osuna, P., Zhao, L., Ganjehunte, G., Peterson, G., & Gardea-Torresdey, J. L. (2014). Variability in salt tolerance of Sorghum bicolor L. Agril. Sci., 2(1), 9.

    Google Scholar 

  39. Gupta, B. & Huang, B. (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. - Int. J. Genomics, 1-18

  40. Sharma, A., Kumar, V., Shahzad, B., et al. (2020). Photosynthetic response of plants under different abiotic stresses: A Review. J. Pl. Gr. Regul., 39, 509–531.

    Article  CAS  Google Scholar 

  41. Ahmad, P., Alyemeni, M. N., Ahanger, M. A., et al. (2018). Salicylic Acid (SA) induced alterations in growth, biochemical attributes and antioxidant enzyme activity in Faba Bean (Vicia faba L.) seedlings under NaCl toxicity. - Russ. J. Pl. Physiol., 65, 104–114.

    CAS  Google Scholar 

  42. Mahlooji, M., Sharifi, R. S., Razmjoo, J., Sabzalian, M. R., & Sedghi, M. (2018). Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes. Photosynthetica, 56(2), 549–556.

    Article  CAS  Google Scholar 

  43. Kukreja, S., Nandwal, A. S., Kumar, N., Sharma, S. K., Sharma, S. K., Kundu, B. S., Unvi, V., & Sharma, P. K. (2006). Response of chickpea roots to short-term salinization and desalinization: Plant water status, ethylene evolution, antioxidant activity and membrane integrity. Physiol. Mol. Biol. Pl., 12, 67.

    CAS  Google Scholar 

  44. Rani, K.(2004)Effect of salinity on morphological anatomical and reproductive aspectsin mungbean (Vigna radiata L. Wilczek) and their hybrids (Doctoral dissertation, CCS HAU, Hisar),

  45. McNeil, S. D., Nuccio, M. L., & Hanson, A. D. (1999). Betaines and related osmoprotectants targets for metabolic engineering of stress resistance. Pl. Physiol., 120, 945–949.

    Article  CAS  Google Scholar 

  46. Sultan, I., Khan, I., Chattha, M. U., Hassan, M. U., Barbanti, L., Calone, R., Ali, M., Majid, S., Ghani, M. A., Batool, M., Izzat, W., & Usman, S. (2021) Improved salinity tolerance in early growth stage of maize through salicylic acid foliar application. Italian Journal of Agronomy, 16(3). https://doi.org/10.4081/ija.2021.1810

  47. Clarke, S. M., Mur, L. A., Wood, J. E., & Scott, I. M. (2004). Salicylic acid dependent signaling promotes basal thermo-tolerance but is not essential for acquired thermo-tolerance in Arabidopsis thaliana. The Pl. J., 38, 432–447.

    Article  CAS  Google Scholar 

  48. Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline underchanging environments: a review. Pl. Signal Behav., 7(11), 1456–1466.

    Article  CAS  Google Scholar 

  49. Inzé, D., & Van Montagu, M. (1995). Oxidative stress in plants. Curr. Op. Biotech., 6, 153–158.

    Article  Google Scholar 

  50. Kuznetsov, V. V., & Shevyakova, N. I. (1999). Proline under stress: biological role, metabolism and regulation. Russ. J. Pl. Physiol., 46(2), 274–287.

    CAS  Google Scholar 

  51. Nakamura, T., Nomura, M., Mori, H., Jagendorf, A. T., Ueda, A., & Takabe, T. (2001). An isozyme of betaine aldehyde dehydrogenase in barley. Pl. Cell Physiol., 42, 1088–1092.

    Article  CAS  Google Scholar 

  52. Tan, Y., Liang, Z., Shao, H., & Du, F. (2006). Effect of water deficits on the activity of anti-oxidative enzymes and osmoregulation among three different genotypes of Radix astragali at seeding stage. Colloids Surf. B: Biointerfaces, 49, 60–65.

    Article  CAS  PubMed  Google Scholar 

  53. Papageorgiou, G. C., & Morata, N. (1995). The usually strong stabilizing effects of glycine betaine on the structure and function in the oxygen evolving photosystem-II complex. Photosynth. Res., 44, 243–252.

    Article  CAS  PubMed  Google Scholar 

  54. Kavi Kishor, P. B., Hong, Z., Miao, G. H., Hu, C. A., & Verma, D. P. S. (1995). Over expression of delta- pyrroline 5 carboxylase synthetase increases proline production and confers osmotolerance in transgenic plants. Pl. Physiol., 108(4), 1387–1394. https://doi.org/10.1104/pp.108.4.1387.

    Article  Google Scholar 

  55. Singh, B., & Pareek, R. G. (2003). Effect of phosphorus and biofertilizers on growth and yield of mungbean. Ind. J. Pulses Res, 16(1), 31–33.

    Google Scholar 

  56. Nandwal, A. S., Kukreja, S., Kumar, N., Sharma, P. K., Jain, M., Mann, A., & Singh, S. (2007). Plant water status, ethylene evolution, N2-fixing efficiency, antioxidant activity and lipid peroxidation in Cicer arietinum L. nodules as affected by short-term salinization and desalinization. J. Pl. Physiol., 164, 1161–1169.

    Article  CAS  Google Scholar 

  57. Ahmad, M. A., Murali, P. V., & Marimuthu, G. (2014). Impact of salicylic acid on growth, photosynthesis and compatible solute accumulation in Allium cepa L. subjected to drought stress. Int. J. Res. Agric. Food Sci., 4, 22–30.

    Google Scholar 

  58. Kaur, G, Atwal, AK, Sangha, MK, Kaur, G and Banga, SS (2011) Response of Brassica juncea genotypes to heat stress and role of salicylic acid and abscisic acid in thermo tolerance. - In: Rang et al. (eds.) Proc. Int. Conf. Preparing Agriculture for Climate Change, 6-8 February, 2011,- Ludhiana, India - Crop Improv. 3:159,

  59. Mauro, R. P., Agnello, M., Distefano, M., Sabatino, L., San Bautista Primo, A., Leonardi, C., & Giuffrida, F. (2020). Chlorophyll fluorescence, photosynthesis and growth of tomato plants as affected by long-term oxygen root zone deprivation and grafting. Agronomy, 10(1), 137. https://doi.org/10.3390/agronomy10010137.

    Article  CAS  Google Scholar 

  60. Parimelazhagan, T., & Francis, K. (1996). Effect of water stress and salinity on photochemical activity of green gram. Bioved, 7(1), 47–52.

    Google Scholar 

  61. Ali, M., Usman, M., & Ahsan, T. (2012). Sodium sulphate induced modulation in some key morphophysiological characteristics in Sorghum bicolor L. World J. Agric. Res, 8, 381–384.

    CAS  Google Scholar 

  62. Mohamed, I., Shalby, N., Bai, C., Qin, M., Agami, R. A., Jie, K., Wang, B., & Zhou, G. (2020). Stomatal and photosynthetic traits are associated with investigating sodium chloride tolerance Brassica napus L. cultivars. Plants Basel - Switzerland, 9(1), 62.

    CAS  Google Scholar 

  63. Chandra, A., & Bhatt, R. K. (1998). Biochemical and physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthetica, 35, 255–258.

    Article  CAS  Google Scholar 

  64. Szalai, G., Paldi, E., & Janda, T. (2005). Effect of salt stress on the endogenous salicylic acid content in maize (Zea mays L.) plants. Acta Biologica Szegediensis, 49(1), 47–48.

    Google Scholar 

  65. Majeed, S., Akram, M., Latif, M., Ijaz, M., & Hussain, M. (2016). Mitigation of drought stress by foliar application of salicylic acid and potassium in mung bean (Vigna radiata L.). - Leg. Res, 39, 208–214.

    Google Scholar 

  66. Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. - Ann. Rev. Pl. Biol., 51, 463–499.

    CAS  Google Scholar 

  67. Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7, 1–38.

    Article  CAS  Google Scholar 

  68. Meloni, D. A., & Martínez, C. A. (2009). Glycine betaine improves salt tolerance in vinal (Prosopisruscifolia Griesbach) seedlings. Braz. J. Pl. Physiol., 21, 233–241.

    Article  Google Scholar 

  69. Chernane, H., Latique, S., Mansori, M., & ElKaoua, M. (2015). Salt stress tolerance andantioxidative mechanisms in wheat plants (Triticum durum L.) by seaweed extracts application. J. Agric. Vet. Sc., 8, 36–44.

    Google Scholar 

  70. Mickky, B. M., & Aldesuquy, H. S. (2017). Impact of osmotic stress on seedling growth observations, membrane characteristics and antioxidant defense system of different wheat genotypes. Egypt. J. Basic & Appl. Sc., 4, 47–54.

    Article  Google Scholar 

  71. Shakeri, E., Emam, Y., Pessarakli, M., & Tabatabaei, S. A. (2020). Biochemical traits associated with growing sorghum genotypes with saline water in the field. J. Pl. Nutr., 43(8), 1136–1153.

    Article  CAS  Google Scholar 

  72. Xue, X., Zhang, Q., & Wu, J. (2013). Research of reactive oxygen species in plants and its application on stress tolerance. - Biotechnol. Bulletin, 36, 6–11.

    Google Scholar 

  73. Ebrahimian, E., & Bybordi, A. (2012). Effect of salinity, salicylic acid, silicium and ascorbic acid on lipid peroxidation, antioxidant enzyme activity and fatty acid content of sunflower. Afr. J. Agril. Res, 7, 3685–3694.

    Google Scholar 

  74. He, Y., & Zhu, Z. (2008). Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. Biol. Plant., 52, 792–795.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SD and VG conceived the idea and MJ and S carried out experimental and initial data analysis, and prepared initial draft of manuscript. SM performed major data analysis and subsequent discussion of results and revised the draft of manuscript. VG assisted in data analysis and figure/graphs preparation. SM was involved in correspondence with the journal and subsequent revisions of the manuscript according to reviewers’ comments. All authors read and consented on the manuscript.

Corresponding authors

Correspondence to Vinod Goyal or Shweta Mehrotra.

Ethics declarations

Ethics Approval

Study requires no ethical approvals. Manuscript is in compliance with ethical standards. An ethics statement was not required for this study type, no human or animal subjects or materials were used.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised. The names of the authors should be spelled out which should read as: Manish Jangra, Sarita Devi, Satpal, Neeraj Kumar, Vinod Goyal and Shweta Mehrotra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangra, M., Devi, S., Satpal et al. Amelioration Effect of Salicylic Acid Under Salt Stress in Sorghum bicolor L.. Appl Biochem Biotechnol 194, 4400–4423 (2022). https://doi.org/10.1007/s12010-022-03853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03853-4

Keywords

Navigation