Skip to main content
Log in

Fabrication of Mesoporous Silica Nanoparticle–Incorporated Coaxial Nanofiber for Evaluating the In Vitro Osteogenic Potential

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The most important role of tissue engineering is to develop a biomaterial with a property that mimics the extracellular matrix (ECM) by enhancing the lineage-specific proliferation and differentiation with favorable regeneration property to aid in new tissue formation. Thus, to develop an ideal scaffold for bone repair, we have fabricated a composite nanofiber by the coaxial electrospinning technique. The coaxial electrospun nanofiber contains the core layer, consisting of polyvinyl alcohol (PVA) blended with oregano extract and mesoporous silica nanoparticles (PVA-OE-MSNPs), and the shell layer, consisting of poly-ε-caprolactone blended with collagen and hydroxyapatite (PCL-collagen-HAP). We evaluated the physicochemical properties of the nanofibers using X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). In vitro biocompatibility, cell adhesion, cell viability, and osteogenic potential were evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenlytetrazolium bromide (MTT), calcein AM, and alkaline phosphatase (ALP) activity and Alizarin Red staining in NIH 3T3/MG-63 cells. The results showed that the nanoparticle-incorporated coaxial nanofiber was observed with bead-free, continuous, and uniform fiber morphology with a mean diameter in the range of 310 ± 125 nm. From the biochemical studies, it is observed that the incorporation of nanofiber with HAP and MSNPs shows good swelling property with ideal porosity, biodegradation, and enhanced biomineralization property. In vitro results showed that the scaffolds with nanoparticles have higher cell adhesion, cell viability, ALP activity, and mineralization potential. Thus, the fabricated nanofiber could be an appropriate implantable biomaterial for bone tissue engineering.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The authors confirm that the data analyzed and generated from these research findings are provided within this article.

References

  1. Frohbergh, M. E., Katsman, A., Botta, G. P., Lazarovici, P., Schauer, C. L., Wegst, U. G., & Lelkes, P. I. (2012). Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials, 33(36), 9167–9178.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lanza, R., Langer, R., & Vacanti, J. P. (2011). Principles of tissue engineering. Academic Press.

    Google Scholar 

  3. Boskey, A. L., & Posner, A. S. (1984). Bone structure, composition, and mineralization. Orthopedic Clinics of North America, 15, 597–612.

    CAS  Google Scholar 

  4. Lia, Y. G., Ge, J., Ma, P. X., & Lei, Bo. (2018). Applied Materials Today, 10, 153–163.

    Google Scholar 

  5. Zhang, X., Awad, H. A., O’Keefe, R. J., Guldberg, R. E., & Schwarz, E. M. (2008). A perspective: Engineering periosteum for structural bone graft healing. Clinical Orthopaedics and Related Research, 466, 1777–1787.

    PubMed  PubMed Central  Google Scholar 

  6. Khajavi, R., Abbasipour, M., & Bahador, A. (2016). Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. Journal of Applied Polymer Science. https://doi.org/10.1002/APP.42883

    Article  Google Scholar 

  7. Khalf, A., & Madihally, S. V. (2017). Recent advances in multiaxial electrospinning for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 112, 1–17.

    CAS  PubMed  Google Scholar 

  8. Wade, R. J., & Burdick, J. A. (2014). Advances in nanofibrous scaffolds for biomedical applications: From electrospinning to self-assembly. Nano Today, 9, 722–742.

    CAS  Google Scholar 

  9. Hajiali, F., Tajbakhsh, S., & Shojaei, A. (2017). Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: A review. Polymer Reviews. https://doi.org/10.1080/15583724.2017.1332640

    Article  Google Scholar 

  10. Venugopal, J., Low, S., Choon, A. T., Sampath Kumar, T. S., & Ramakrishna, S. (2008). Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. Journal of Material Science: Materials in Medicine, 19, 2039–2046.

    CAS  Google Scholar 

  11. Cumming, M. H., Leonard, A. R., LeCorre-Bordes, D. S., & Hofman, K. (2017). Intra-fibrillar citric acid crosslinking of marine collagen electrospun nanofibers. Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2018.03.180

    Article  Google Scholar 

  12. Yeo, M. G., & Kim, G. H. (2012). Preparation and characterization of 3D composite scaffolds based on rapid-prototyped PCL/b-TCP struts and electrospun PCL coated with collagen and HA for bone regeneration. Chemistry of Materials, 24, 910–913.

    Google Scholar 

  13. Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F. A., & Zhang, M. (2005). Electrospun chitosan based nanofibers and their cellular compatibility. Biomaterials, 26, 6176–6184.

    CAS  PubMed  Google Scholar 

  14. Woo, K. M., Jun, J. H., Chen, V. J., Seo, J., Baek, J. H., Ryoo, H. M., Ryoo, H. M., Kim, G. S., Somerman, M. J., & Ma, P. X. (2007). Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials, 28(2), 335–343.

    CAS  PubMed  Google Scholar 

  15. Abdullah, M. F., Nuge, T., Andriyana, A., Ang, B. C., & Muhamad, F. (2019). Core–shell fibers: Design, roles, and controllable release strategies in tissue engineering and drug delivery. Polymers. https://doi.org/10.3390/polym11122008

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gao, Y., Shao, W., Qian, W., He, J., Zhou, Y., Qi, K., Wang, L., Cui, S., & Wang, R. (2017). Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering. Materials Science & Engineering C, 84, 195–207.

    Google Scholar 

  17. Khajavi, R., & Abbasipour, M. (2012). Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Scientia Iranica, 19, 2029–2034.

    Google Scholar 

  18. Perez, R. A., & Kim, H.-W. (2015). Core–shell designed scaffolds for drug delivery and tissue engineering. Acta biomaterialia, 21, 2–19.

    CAS  PubMed  Google Scholar 

  19. Fathima, N. N., Dhathathreyan, A., Ramasami, T., Kragel, J., & Miller, R. (2011). Degree of crosslinking of collagen at interfaces: Adhesion and shear rheological indicators. International Journal of Biological Macromolecules, 48, 67–73.

    CAS  PubMed  Google Scholar 

  20. Zhang, K., Qian, Y., Wang, H., Fan, L., Huang, C., & YinMo, A. (2010). Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application. Journal of Biomedical Material Research A, 95, 870–881.

    Google Scholar 

  21. Bispo, V. M., Mansur, A. A., Barbosa-Stancioli, E. F., & Mansur, H. S. (2010). Biocompatibility of nanostructured chitosan/poly(vinyl alcohol) blends chemically crosslinked with genipin for biomedical applications. Journal of Biomedical Nanotechnology, 6, 166–175.

    CAS  PubMed  Google Scholar 

  22. Zhou, X., Feng, W., Qiu, K., Chen, L., Wang, W., Nie, W., Mo, X., & He, C. (2015). BMP-2 derived peptide and dexamethasone incorporated mesoporous silica nanoparticles for enhanced osteogenic differentiation of bone mesenchymal stem cells. ACS Applied Materials &. Interface, 29(7), 15777–15789.

    Google Scholar 

  23. Chen, L., Zhou, X., Nie, W., Zhang, Q., Wang, W., Zhang, Y., & He, C. (2016). Multifunctional redox-responsive mesoporous silica nanoparticles for efficient targeting drug delivery and magnetic resonance imaging. ACS Applied Materials &. Interface, 49(8), 33829–33841.

    Google Scholar 

  24. Zhao, Q., Li, K., Sun, H., Sui, H., Zhang, Y., Liang, H., & Wu, X. (2015). Composite mesoporous silica nanoparticle/chitosan nanofibers for bone tissue engineering. RSC Advances, 5, 17541–17549.

    Google Scholar 

  25. Leyva-López, N., Nair, V., Bang, W. Y., Cisneros-Zevallos, L., & Basilio Heredia, J. (2016). Protective role of terpenes and polyphenols from three species of Oregano (Lippia graveolens, Lippia palmeri and Hedeoma patens) on the suppression of lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. Journal of Ethnopharmacology, 187, 302–312.

    PubMed  Google Scholar 

  26. Yang, H., Niu, Li., Sun, J.-L., Huang, X.-Q., Pei, D.-D., Cui, H., & Tay, F. (2017). Biodegradable mesoporous delivery system for biomineralization precursors. International Journal of Nanomedicine, 12, 839–854.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Raftery, R. M., Woods, B., Marques, A. L. P., Moreira-Silva, J., Silva, T. H., Cryan, S.-A., Reis, R. L., & O’Brien, F. J. (2016). Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality. Acta Biomaterialia, 43, 160–169.

    CAS  PubMed  Google Scholar 

  28. Abidi, S. S. A., & Murtaza, Q. (2014). Synthesis and characterization of nano-hydroxyapatite powder using wet chemical precipitation reaction. Journal of Materials Science & Technology, 4, 307–310.

    Google Scholar 

  29. Chong, E. J., Phan, T. T., Lim, I. J., Zhang, Y. Z., Bay, B. H., Ramakrishna, S., & Lim, C. T. (2007). Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterialia, 3, 321–330.

    CAS  PubMed  Google Scholar 

  30. Herrero, M., Gómez-Tejedor, J. A., & Vallés-Lluch, A. (2018). PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. European Polymer Journal, 99, 445–455.

    Google Scholar 

  31. Prosecká, E., Rampichová, M., Litvinec, A., Tonar, Z., Králíčková, M., Vojtová, L., Kochová, P., Plencner, M., Buzgo, M., Míčková, A., Jančář, J., & Amler, E. (2015). Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. Journal of Biomedical Materials Research Part A, 2, 671–682.

    Google Scholar 

  32. Sekar, A. D., Muthukumar, H., Chandrasekaran, N. I., & Matheswaran, M. (2018). Photocatalytic degradation of naphthalene using calcined Fe-ZnO/PVA nanofibers. Chemosphere, 205, 610–617.

    CAS  PubMed  Google Scholar 

  33. Zhou, X., Weng, W., Chen, B., Feng, W., Wang, W., Nie, W., Chen, L., Mo, X., Su, J., & He, C. (2018). Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects. Journal of Materials Chemistry B, 6, 740–752.

    CAS  PubMed  Google Scholar 

  34. Pathmanapan, S., Periyathambi, P., & Ananda Sadagopan, S. K. (2020). Fibrin hydrogel incorporated with graphene oxide functionalized nanocomposite scaffolds for bone repair – In vitro and in vivo study. Nanomedicine: Nanotechnology, Biology and Medicine, 29, 102251.

    CAS  Google Scholar 

  35. Sharma, C., Dinda, A. K., Potdar, P. D., Chou, C.-F., & Mishra, N. C. (2016). Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Materials Science and Engineering C, 64, 416–427.

    CAS  PubMed  Google Scholar 

  36. Mehrasa, M., Asadollahi, M. A., Nasri-Nasrabadi, B., Ghaedi, K., Salehi, H., Dolatshahi-Pirouz, A., & Arpanaei, A. (2016). Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties. Materials Science and Engineering C, 66, 25–32.

    CAS  PubMed  Google Scholar 

  37. Sedghi, R., Sayyari, N., Shaabani, A., Niknejad, H., & Tayebi, T. (2018). Novel biocompatible zinc-curcumin loaded coaxial nanofibers for bone tissue engineering application. Polymer, 145, 244–255.

    Google Scholar 

  38. Prabhakaran, M. P., Venugopal, J., & Ramakrishna, S. (2009). Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomaterialia, 5, 2884–2893.

    CAS  PubMed  Google Scholar 

  39. Qianjun, H., Yu, G., Lingxia, Z., Zhiwen, Z., Fang, G., Xiufeng, J., Yaping, L., & Jianlin, S. (2011). A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials, 32, 7711–7720.

    Google Scholar 

  40. Yan-Tao, S., Hong-Yun, C., Yi, G., Hai-Ming, N., Wei, C., Qiang, C., Bao-Hua, C., Xiao-Dan, S., You-Wei, Y., & Heng-De, L. (2010). Materials Chemistry and Physics, 120, 193–198.

    Google Scholar 

  41. Yang, Y.-J., Tao, X., Hou, Q., Ma, Y., Chen, X.-L., & Chen, J.-F. (2010). Mesoporous silica nanotubes coated with multilayered polyelectrolytes for pH-controlled drug release. Acta Biomaterialia, 2010(6), 3092–3100.

    Google Scholar 

  42. Akbay, E., & Olmez, T. G. (2018). Sonochemical synthesis and loading of PbS nanoparticles into mesoporous silica. Materials Letters, 215, 263–267.

    CAS  Google Scholar 

  43. Amal, A., Moshera, S., El-AlimAbd El-Alim, A. S. H., Rabia, A. E. G., & Ayoub, M. M. H. (2018). Assessment of formulation parameters needed for successful vitamin C entrapped polycaprolactone nanoparticles. International Journal of Polymeric Materials and Polymeric Biomaterials, 67(16), 942–950.

    Google Scholar 

  44. Cao, M., Chuanyong Wang, Ru., Xia, P. C., Miao, J., Yang, B., Qian, J., & Tang, Y. (2018). Preparation and performance of the modified high-strength/high-modulus polyvinyl alcohol fiber/polyurethane grouting materials. Construction and Building Material, 168, 482–489.

    CAS  Google Scholar 

  45. Ghassemi Zahra & Slaughter Gymama. (2018). Storage stability of electrospun pure gelatin stabilized with EDC/Sulfo-NHS. Biopolymers, 109, 1–12.

    Google Scholar 

  46. Zhou, X., Liu, P., Nie, W., Peng, C., Li, T., Qiang, L., He, C., & Wang, J. (2020). Incorporation of dexamethasone-loaded mesoporous silica nanoparticles into mineralized porous biocomposite scaffolds for improving osteogenic activity. International Journal of Biological Macromolecules, 149, 116–126.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, CSIR-CLRI, for providing support to conduct this experiment and publish the article (CSIR-CLRI communication No. 1489). The authors also acknowledge and thank the support rendered by CLRI-CATERS (Centre for Analysis, Testing, Evaluation and Reporting Services) by providing the infrastructure facilities to carry out the research work.

Funding

This study received support from the CSIR-CLRI–funded project (MLP-03).

Author information

Authors and Affiliations

Authors

Contributions

S.P.: Contributed to conceptualization, hypothesis, study design, experimentation, data interpretation, and manuscript preparation.

M.S.: Performed the material preparation and assisted in vitro studies.

A.K.P.: Contributed to the study design, analysis of the data, and material characterization.

S.K.A.S.: Contributed to the study design, data interpretation, and review of the final manuscript.

All authors approved the final manuscript.

Corresponding author

Correspondence to Suresh Kumar Anandasadagopan.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathmanapan, S., Sekar, M., Pandurangan, A.K. et al. Fabrication of Mesoporous Silica Nanoparticle–Incorporated Coaxial Nanofiber for Evaluating the In Vitro Osteogenic Potential. Appl Biochem Biotechnol 194, 302–322 (2022). https://doi.org/10.1007/s12010-021-03741-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03741-3

Keywords

Navigation