Skip to main content
Log in

Covalent Immobilization of Chondrostereum purpureum Endopolygalacturonase on Ferromagnetic Nanoparticles: Catalytic Properties and Biotechnological Application

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pectinases are widely used in a variety of industrial processes. However, their application is limited by low catalytic processivity, reduced stability, high cost, and poor re-use compatibility. These drawbacks may be overcome by enzyme immobilization with ferromagnetic nanoparticles, which are easily recovered by a magnetic field. In this work, an endopolygalacturonase from Chondrostereum purpureum (EndoPGCp) expressed in Pichia pastoris was immobilized on glutaraldehyde-activated chitosan ferromagnetic nanoparticles (EndoPGCp-MNP) and used to supplement a commercial enzyme cocktail. No significant differences in biochemical and kinetic properties were observed between EndoPGCp-MNP and EndoPGCp, although the EndoPGCp-MNP showed slightly increased thermostability. Cocktail supplementation with EndoPGCp-MNP increased reducing sugar release from orange wastes by 1.8-fold and showed a synergistic effect as compared to the free enzyme. Furthermore, EndoPGCp-MNP retained 65% of the initial activity after 7 cycles of re-use. These properties suggest that EndoPGCp-MNP may find applications in the processing of pectin-rich agroindustrial residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512–531. https://doi.org/10.1111/1541-4337.12330

    Article  PubMed  CAS  Google Scholar 

  2. Carli, S., Meleiro, L. P., & Ward, R. J. (2019). Biochemical and kinetic characterization of the recombinant GH28 Stereumpurpureumendopolygalacturonase and its biotechnological application. International Journal of Biological Macromolecules, 137, 469–474. https://doi.org/10.1016/J.IJBIOMAC.2019.06.165

    Article  PubMed  CAS  Google Scholar 

  3. Samanta, S. (2019). Microbial pectinases: A review on molecular and biotechnological perspectives. Journal of Microbiology, Biotechnology and Food Sciences, 9(2), 248–266. https://doi.org/10.15414/JMBFS.2019.9.2.248-266

    Article  CAS  Google Scholar 

  4. Amin, F., Bhatti, H. N., & Bilal, M. (2019). Recent advances in the production strategies of microbial pectinases—A review. International Journal of Biological Macromolecules, 122, 1017–1026. https://doi.org/10.1016/J.IJBIOMAC.2018.09.048

    Article  PubMed  CAS  Google Scholar 

  5. Garg, G., Singh, A., Kaur, A., Singh, R., Kaur, J., & Mahajan, R. (2016). Microbial pectinases: An ecofriendly tool of nature for industries. Biotech, 6(1), 1–13. https://doi.org/10.1007/S13205-016-0371-4

    Article  Google Scholar 

  6. Hosseini, S. S., Khodaiyan, F., Seyed, S. M., Azimi, S. Z., & Gharaghani, M. (2020). Immobilization of pectinase on the glass bead using polyaldehyde kefiran as a new safe cross-linker and its effect on the activity and kinetic parameters. Food Chemistry, 309, 125777. https://doi.org/10.1016/J.FOODCHEM.2019.125777

    Article  PubMed  CAS  Google Scholar 

  7. Wu, R., He, B. H., Zhao, G. L., Qian, L. Y., & Li, X. F. (2013). Immobilization of pectinase on oxidized pulp fiber and its application in whitewater treatment. Carbohydrate Polymers, 97(2), 523–529. https://doi.org/10.1016/J.CARBPOL.2013.05.019

    Article  PubMed  CAS  Google Scholar 

  8. Boudrant, J., Woodley, J. M., & Fernandez-Lafuente, R. (2020). Parameters necessary to define an immobilized enzyme preparation. Process Biochemistry, 90, 66–80. https://doi.org/10.1016/J.PROCBIO.2019.11.026

    Article  CAS  Google Scholar 

  9. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology. Elsevier. https://doi.org/10.1016/j.enzmictec.2007.01.018

  10. Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, Á., Torres, R., & Fernández-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42(15), 6290–6307. https://doi.org/10.1039/C2CS35231A

    Article  PubMed  CAS  Google Scholar 

  11. Guisan, J. M. (2013). Immobilization of Enzymes and Cells (1st ed.). HUMANA.

    Book  Google Scholar 

  12. de Oliveira, R. L., Dias, J. L., da Silva, O. S., & Porto, T. S. (2018). Immobilization of pectinase from Aspergillusaculeatus in alginate beads and clarification of apple and umbu juices in a packed bed reactor. Food and Bioproducts Processing, 109, 9–18. https://doi.org/10.1016/J.FBP.2018.02.005

    Article  Google Scholar 

  13. Seenuvasan, M., Malar, C. G., Preethi, S., Balaji, N., Iyyappan, J., Kumar, M. A., & Kumar, K. S. (2013). Immobilization of pectinase on co-precipitated magnetic nanoparticles for enhanced stability and activity. Research Journal of Biotechnology, 8(5), 24–30.

    CAS  Google Scholar 

  14. Ramírez Tapias, Y. A., Rivero, C. W., Gallego, F. L., Guisán, J. M., & Trelles, J. A. (2016). Stabilization by multipoint covalent attachment of a biocatalyst with polygalacturonase activity used for juice clarification. Food Chemistry, 208, 252–257. https://doi.org/10.1016/J.FOODCHEM.2016.03.086

    Article  PubMed  Google Scholar 

  15. Carli, S., de Carneiro, L. A. B., & C., Ward, R. J., & Meleiro, L. P. . (2019). Immobilization of a β-glucosidase and an endoglucanase in ferromagnetic nanoparticles: A study of synergistic effects. Protein Expression and Purification, 160, 28–35. https://doi.org/10.1016/J.PEP.2019.03.016

    Article  PubMed  CAS  Google Scholar 

  16. Lei, Z., Bi, S., Hu, B., & Yang, H. (2007). Combined magnetic and chemical covalent immobilization of pectinase on composites membranes improves stability and activity. Food Chemistry, 105(3), 889–896. https://doi.org/10.1016/J.FOODCHEM.2007.04.045

    Article  CAS  Google Scholar 

  17. Carneiro, L. A. B. C., & Ward, R. J. (2018). Functionalization of paramagnetic nanoparticles for protein immobilization and purification. Analytical Biochemistry, 540–541, 45–51. https://doi.org/10.1016/J.AB.2017.11.005

    Article  PubMed  Google Scholar 

  18. Read, S. M., & Northcote, D. H. (1981). Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Analytical Biochemistry, 116(1), 53–64. https://doi.org/10.1016/0003-2697(81)90321-3

    Article  PubMed  CAS  Google Scholar 

  19. McIlvaine, T. C. (1921). A buffer solution for colorimetric comparison. Journal of Biological Chemistry, 49(1), 183–186. https://doi.org/10.1016/S0021-9258(18)86000-8

    Article  CAS  Google Scholar 

  20. Miller, G. L. (2002). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/AC60147A030

    Article  Google Scholar 

  21. Segel, I. H. (1975). Enzyme kinetics behavior and analysis of rapid equilibrium and steady state enzyme systems (2nd ed.). Wiley-Blackwell.

    Google Scholar 

  22. Leone, F. A., Baranauskas, J. A., Furriel, R. P. M., & Borin, I. A. (2005). SigrafW: An easy-to-use program for fitting enzyme kinetic data. Biochemistry and Molecular Biology Education, 33(6), 399–403. https://doi.org/10.1002/BMB.2005.49403306399

    Article  PubMed  CAS  Google Scholar 

  23. Dal Magro, L., Kornecki, J. F., Klein, M. P., Rodrigues, R. C., & Fernandez-Lafuente, R. (2019). Optimized immobilization of polygalacturonase from Aspergillusniger following different protocols: Improved stability and activity under drastic conditions. International Journal of Biological Macromolecules, 138, 234–243. https://doi.org/10.1016/j.ijbiomac.2019.07.092

    Article  CAS  Google Scholar 

  24. Mohammadi, M., KhakbazHeshmati, M., Sarabandi, K., Fathi, M., Lim, L. T., & Hamishehkar, H. (2019). Activated alginate-montmorillonite beads as an efficient carrier for pectinase immobilization. International Journal of Biological Macromolecules, 137, 253–260. https://doi.org/10.1016/j.ijbiomac.2019.06.236

    Article  PubMed  CAS  Google Scholar 

  25. Alagöz, D., Tükel, S. S., & Yildirim, D. (2016). Immobilization of pectinase on silica-based supports: Impacts of particle size and spacer arm on the activity. International Journal of Biological Macromolecules, 87, 426–432. https://doi.org/10.1016/j.ijbiomac.2016.03.007

    Article  PubMed  CAS  Google Scholar 

  26. Saxena, S., Shukla, S., Thakur, A., & Gupta, R. (2008). Immobilization of polygalacturonase from Aspergillusniger onto activated polyethylene and its application in apple juice clarification. Acta Microbiologica et Immunologica Hungarica, 55(1), 33–51. https://doi.org/10.1556/AMicr.55.2008.1.3

    Article  PubMed  CAS  Google Scholar 

  27. Rao, M. N., Kembhavi, A. A., & Pant, A. (2000). Immobilization of endo-polygalacturonase from Aspergillus ustus on silica gel. Biotechnology Letters 22.

  28. Guzik, U., Hupert-Kocurek, K., & Wojcieszyńska, D. (2014). Immobilization as a strategy for improving enzyme properties-Application to oxidoreductases. Molecules, 19(7), 8995–9018. https://doi.org/10.3390/MOLECULES19078995

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: Why, what and how. Chemical Society Reviews, 42(15), 6223–6235. https://doi.org/10.1039/c3cs60075k

    Article  PubMed  CAS  Google Scholar 

  30. Wahab, R. A., Elias, N., Abdullah, F., & Ghoshal, S. K. (2020, July 1). On the taught new tricks of enzymes immobilization: An all-inclusive overview. Reactive and Functional Polymers. Elsevier B.V. https://doi.org/10.1016/j.reactfunctpolym.2020.104613

  31. Ramirez, H. L., Gómez Brizuela, L., ÚbedaIranzo, J., Arevalo-Villena, M., & Briones Pérez, A. I. (2016). Pectinase immobilization on a chitosan-coated chitin support. Journal of Food Process Engineering, 39(1), 97–104. https://doi.org/10.1111/jfpe.12203

    Article  CAS  Google Scholar 

  32. dos Santos, J. C. S., Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Importance of the support properties for immobilization or purification of enzymes. ChemCatChem, 7(16), 2413–2432. https://doi.org/10.1002/CCTC.201500310

    Article  Google Scholar 

  33. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2013). Glutaraldehyde in bio-catalysts design: A useful crosslinker and a versatile tool in enzyme immobilization. RSC Advances, 4(4), 1583–1600. https://doi.org/10.1039/C3RA45991H

    Article  Google Scholar 

  34. Melo, R. R. de, Alnoch, R. C., Vilela, A. F. L., Souza, E. M. de, Krieger, N., Ruller, R., … Mateo, C. (2017). New heterofunctional supports based on glutaraldehyde-activation: A tool for enzyme immobilization at neutral pH. Molecules, 22(7), 1088. https://doi.org/10.3390/MOLECULES22071088

  35. Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment. Diagnosis Press Limited. https://doi.org/10.1080/13102818.2015.1008192

  36. Hritcu, D., Popa, M. I., Popa, N., Badescu, V., & Balan, V. (2009). Preparation and characterization of magnetic chitosan nanospheres. Turkish Journal of Chemistry, 33, 785–796. https://doi.org/10.3906/kim-0812-42

    Article  CAS  Google Scholar 

  37. de Andrade, B. C., Gennari, A., Renard, G., Nervis, B. D. R., Benvenutti, E. V., Costa, T. M. H., … Volken de Souza, C. F. (2021). Synthesis of magnetic nanoparticles functionalized with histidine and nickel to immobilize His-tagged enzymes using β-galactosidase as a model. International Journal of Biological Macromolecules, 184, 159–169. https://doi.org/10.1016/J.IJBIOMAC.2021.06.060

  38. Podrepšek, G. H., Knez, Ž, & Leitgeb, M. (2020). Development of chitosan functionalized magnetic nanoparticles with bioactive compounds. Nanomaterials, 10(10), 1913. https://doi.org/10.3390/NANO10101913

    Article  Google Scholar 

  39. Gennari, A., Mobayed, F. H., Nervis, B. D. R., Benvenutti, E. v., Nicolodi, S., Silveira, N. P. da, … Souza, C. F. V. de. (2019). Immobilization of β-galactosidases on magnetic nanocellulose: Textural, morphological, magnetic, and catalytic properties. Biomacromolecules, 20(6), 2315–2326. https://doi.org/10.1021/ACS.BIOMAC.9B00285.

  40. Seenuvasan, M., Malar, C. G., Preethi, S., Balaji, N., Iyyappan, J., Kumar, M. A., & Kumar, K. S. (2013). Fabrication, characterization and application of pectin degrading Fe 3O4-SiO2 nanobiocatalyst. Materials Science and Engineering C, 33(4), 2273–2279. https://doi.org/10.1016/j.msec.2013.01.050

    Article  PubMed  CAS  Google Scholar 

  41. Singh, R. K., Tiwari, M. K., Singh, R., & Lee, J. K. (2013, January). From protein engineering to immobilization: Promising strategies for the upgrade of industrial enzymes. International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ijms14011232

  42. Dai, X. Y., Kong, L. M., Wang, X. L., Zhu, Q., Chen, K., & Zhou, T. (2018). Preparation, characterization and catalytic behavior of pectinase covalently immobilized onto sodium alginate/graphene oxide composite beads. Food Chemistry, 253, 185–193. https://doi.org/10.1016/J.FOODCHEM.2018.01.157

    Article  PubMed  CAS  Google Scholar 

  43. Li, T., Wang, N., Li, S., Zhao, Q., Guo, M., & Zhang, C. (2007). Optimization of covalent immobilization of pectinase on sodium alginate support. Biotechnology Letters, 29(9), 1413–1416. https://doi.org/10.1007/S10529-007-9409-3

    Article  PubMed  CAS  Google Scholar 

  44. Mohammadi, M., RezaeiMokarram, R., Shahvalizadeh, R., Sarabandi, K., Lim, L. T., & Hamishehkar, H. (2020). Immobilization and stabilization of pectinase on an activated montmorillonite support and its application in pineapple juice clarification. Food Bioscience, 36, 100625. https://doi.org/10.1016/j.fbio.2020.100625

    Article  CAS  Google Scholar 

  45. Shukla, S., Saxena, S., Thakur, J., & Gupta, R. (2010). Immobilization of polygalacturonase from Aspergilusniger onto glutaraldehyde activated Nylon-6 and its application in apple juice clarification. Acta Alimentaria, 39(3), 277–292. https://doi.org/10.1556/AAlim.39.2010.3.4

    Article  CAS  Google Scholar 

  46. Rehman, H. U., Aman, A., Silipo, A., Qader, S. A. U., Molinaro, A., & Ansari, A. (2013). Degradation of complex carbohydrate: Immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support. Food Chemistry, 139(1–4), 1081–1086. https://doi.org/10.1016/J.FOODCHEM.2013.01.069

    Article  PubMed  Google Scholar 

  47. Rehman, H. U., Aman, A., Nawaz, M. A., Karim, A., Ghani, M., Baloch, A. H., & Qader, S. A. U. (2016). Immobilization of pectin depolymerising polygalacturonase using different polymers. International Journal of Biological Macromolecules, 82, 127–133. https://doi.org/10.1016/J.IJBIOMAC.2015.10.012

    Article  CAS  Google Scholar 

  48. Caserta, R., Teixeira-Silva, N. S., Granato, L. M., Dorta, S. O., Rodrigues, C. M., Mitre, L. K., … de Souza, A. A. (2019). Citrus biotechnology: What has been done to improve disease resistance in such an important crop? Biotechnology Research and Innovation, 3, 95–109. https://doi.org/10.1016/J.BIORI.2019.12.004

  49. Martins, H. F., Carvalho, S. S. R. de A., Bispo, J. A. C., Souza, S. M. A. de, & Martinez, E. A. (2019). Maracujá-amarelo (Passiflora edulis f. Flavicarpa): cinética da secagem artificial e natural da casca / Yellow passion fruit (Passiflora edulis f. Flavicarpa): kinetics of artificial and natural drying of the peel. Brazilian Journal of Development, 5(11), 23234–23245. https://doi.org/10.34117/BJDV5N11-044

  50. van Dyk, J. S., Gama, R., Morrison, D., Swart, S., & Pletschke, B. I. (2013). Food processing waste: Problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation. Renewable and Sustainable Energy Reviews, 26, 521–531. https://doi.org/10.1016/J.RSER.2013.06.016

    Article  Google Scholar 

  51. de Moura, F. A., Macagnan, F. T., dos Santos, L. R., Bizzani, M., de Oliveira Petkowicz, C. L., & da Silva, L. P. (2017). Characterization and physicochemical properties of pectins extracted from agroindustrial by-products. Journal of Food Science and Technology, 54(10), 31113117. https://doi.org/10.1007/S13197-017-2747-9

    Article  Google Scholar 

  52. Edwards, M. C., & Doran-Peterson, J. (2012, August). Pectin-rich biomass as feedstock for fuel ethanol production. Applied Microbiology and Biotechnology. Springer. https://doi.org/10.1007/s00253-012-4173-2

  53. de Souza, A. P., C Leite, D. C., Pattathil, S., Hahn, M. G., & Buckeridge, M. S. (n.d.). Composition and structure of sugarcane cell wall polysaccharides: Implications for second-generation bioethanol production. https://doi.org/10.1007/s12155-012-9268-1

  54. Fang, G., Chen, H., Zhang, Y., & Chen, A. (2016). Immobilization of pectinase onto Fe3O4-SiO2-NH2 and its activity and stability. International Journal of Biological Macromolecules, 88, 189–195. https://doi.org/10.1016/j.ijbiomac.2016.03.059

    Article  PubMed  CAS  Google Scholar 

  55. Bilal, M., Zhao, Y., Rasheed, T., & Iqbal, H. M. N. (2018, December 1). Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. International Journal of Biological Macromolecules. Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2018.09.025

Download references

Acknowledgements

We thank André Justino for the technical assistance.

Funding

This investigation was supported by research grants from CNPq (Conselho de Desenvolvimento Científico e Tecnológico), FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Finance Code 001). S.C. received a Ph.D. scholarship from FAPESP (2017/13734–3); L.P.M. received post-doctoral scholarship from FAPESP (2016/17582–0 and 2019/17958–9); J.C.S.S. received post-doctoral scholarship from FAPESP (2019/21989–7); and R.J.W. received researcher stipend from CNPq 305788/2017–5 and the National Institute of Science and Technology of Bioetanol (INCT-Bioetanol) (FAPESP 2011/57908–6 and 2014/50884–5, CNPq 574002/2008–1, and 465319/2014–9).

Author information

Authors and Affiliations

Authors

Contributions

Sibeli Carli: data curation, formal analysis, investigation, methodology, figure preparation, visualization, writing—review & editing; Jose Carlos Santos Salgado: data curation, formal analysis, investigation, methodology, figure preparation, visualization, writing—review & editing; Luana Parras Meleiro: data curation, formal analysis, investigation, methodology, figure preparation, visualization, writing—original draft; Richard John Ward: conceptualization, funding acquisition, project administration, resource management, team supervision, writing—review & editing.

Corresponding author

Correspondence to Richard John Ward.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 373 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carli, S., Salgado, J.C.S., Meleiro, L.P. et al. Covalent Immobilization of Chondrostereum purpureum Endopolygalacturonase on Ferromagnetic Nanoparticles: Catalytic Properties and Biotechnological Application. Appl Biochem Biotechnol 194, 848–861 (2022). https://doi.org/10.1007/s12010-021-03688-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03688-5

Keywords

Navigation